skip to main content


Title: Compositional Attributes of the Deep Continental Crust Inferred From Geochemical and Geophysical Data
Abstract

This study provides a global assessment of the abundance of the major oxides in the deep continental crust. The combination of geochemistry and seismology better constrains the composition of the middle and lower continental crust better than either discipline can achieve alone. The inaccessible nature of the deep crust (typically >15 km) forces reliance on analog samples and modeling results to interpret its bulk composition, evolution, and physical properties. A common practice relates major oxide compositions of small‐ to medium‐scale samples (e.g., medium to high metamorphic grade terrains and xenoliths) to large scale measurements of seismic velocities (Vp, Vs, Vp/Vs) to determine the composition of the deep crust. We provide a framework for building crustal models with multidisciplinary constraints on composition. We present a global deep crustal model that documents compositional changes with depth and accounts for uncertainties in Moho depth, temperature, and physical and chemical properties. Our 3D compositional model of the deep crust uses the USGS Global Seismic Structure Catalog (Mooney, 2015) and a compilation of geochemical analyses on amphibolite and granulite facies lithologies (Sammon & McDonough, 2021,https://doi.org/10.1029/2021JB022791). We find a SiO2gradient from 61.2 ± 7.3 to 53.3 ± 4.8 wt.% from the middle to the base of the crust, with the equivalent lithological gradient ranging from quartz monzonite to gabbronorite. In addition, we calculate trace element abundances as a function of depth from their correlations with major oxides. From here, other lithospheric properties, such as Moho heat flux ( mW/m2), are derived.

 
more » « less
Award ID(s):
2050374
NSF-PAR ID:
10420832
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The composition of the lower continental crust is well studied but poorly understood because of the difficulty of sampling large portions of it. Petrological and geochemical analyses of this deepest portion of the continental crust are limited to the study of high‐grade metamorphic lithologies, such as granulite. In situ lower crustal studies require geophysical experiments to determine regional‐scale phenomena. Since geophysical properties, such as shear wave velocity (Vs), are nonunique among different compositions and temperatures, the most informative lower crustal models combine both geochemical and geophysical knowledge. We explored a combined modeling technique by analyzing the Basin and Range and Colorado Plateau of the United States, a region for which plentiful geochemical and geophysical data are available. By comparing seismic velocity predictions based on composition and thermodynamic principles to ambient noise inversions, we identified three compositional trends in the southwestern United States that reflect three different geologic settings. The Colorado Plateau (thick crust), Northern Basin and Range (medium crust), and Southern Basin and Range (thin crust) have intermediate, intermediate‐mafic, and mafic deep crustal compositions. Identifying the composition of the lower crust depends heavily on its temperature because of the effect it has on rock mineralogy and physical properties. In this region, we see evidence for a lower crust that overall is intermediate‐mafic in composition (53.77.2 wt.% SiO) and notably displays a gradient of decreasing SiOwith depth.

     
    more » « less
  2. Abstract

    We derive new, 3D, isotropic models of seismic compressional and shear wavespeeds, Vp and Vs, respectively, their ratio, Vp/Vs, and a catalog of relocated earthquakes for Southern California from more than 10 million P‐ and S‐wave arrivals associated with over 0.3 million earthquakes that occurred between 2000 and 2020. We augment high‐quality analyst‐reviewed phase arrival picks from the Southern California Earthquake Data Center with S‐wave arrival picks obtained with an automated algorithm, and we derive new wavespeed models via traveltime tomography formulated using Poisson‐Voronoi cells (Fang et al., 2020,https://doi.org/10.1785/0220190141). The results contribute to improved regional wavespeed models, particularly the Vp/Vs model, and absolute event locations. The obtained models correlate well with regional geological features and yield more accurate synthetic waveforms than other regional models do for waves with periods shorter than 5 s in much of the modeled region. The derived event catalog exhibits tighter spatial clustering than the standard regional catalog, thereby helping to characterize subsurface features of major faults. The regional 1D averaged Vp/Vs ratio shows high values at shallow depths, decreases to a minimum at about 10 km, then increases again at greater depths below 15 km. Deep seismicity correlates well with regions of Vp/Vs ratio lower than 1.75, which may indicate an increased brittle‐to‐ductile transition depth with an important influence on crustal mechanics. The new wavespeed models and seismic catalog can be useful for various studies including analyses of seismicity patterns and simulations of crustal deformation and ground motion.

     
    more » « less
  3. Abstract

    Estimates of ice volume over the last 120 ka, from marine isotope Stage (MIS) 5d (∼110 ka) through MIS 3 (60–26 ka) are uncertain. Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) offer an innovative new constraint on past sea level using the oxygen isotopes (δ18O) of planktic (surface and thermocline dwelling) foraminifers to infer the salinity of the Sulu Sea in the Indo‐Pacific Ocean and assess flow through the Karimata Strait (Indonesia) over the last glaciation. Based on the timing of Karimata Strait flooding, the study concludes that local relative sea level in the Karimata Strait was >−8  6 m during MIS 5c (∼100 ka) and >−12  6 m during MIS 5a (∼80 ka), relative to present. For MIS 3, a maximum possible relative sea level of −16  6 m is determined. Here, these results are placed into the context of current knowledge of last glacial sea‐level change and the implications for climate forcings and feedbacks (e.g., global average surface temperature and greenhouse gases) and ice sheet growth are discussed. By tracing past ocean circulation patterns that are modulated by the depth of shallow straits such as the Karimata Strait, Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) provide independent constraints on local sea level, which are essential for improving global mean sea level reconstructions on late Pleistocene glacial‐interglacial cycles.

     
    more » « less
  4. Abstract

    The D‐region ionosphere (6090 km) plays an important role in long‐range communication and response to solar and space weather; however, it is difficult to directly measure with currently available technology. Very low frequency (VLF) radio remote sensing is one of the more promising approaches, using the efficient reflection of VLF waves from the D‐region. A number of VLF beacons can therefore be turned into diagnostic tools. VLF remote sensing techniques are useful and can provide global coverage, but in practice have been applied to a limited area and often on only a small number of days. In this work, we expand the use of a recently introduced machine learning based approach (Gross & Cohen, 2020,https://doi.org/10.1029/2019JA027135) to observe and model the D‐region electron density using VLF transmitting beacons and receivers. We have extended the model to cover nighttime in addition to daytime, and have applied it to track D‐region waveguide parameters, h’ and, over 400 daytimes and 150 nighttimes on up to 21 transmitter‐receiver paths across the continental US. Using an exponential fit, h’ represents the height of the ionosphere andrepresents the slope of the electron density. Using this data set, we quantify diurnal, daily and seasonal variations of the D‐region ionosphere for both daytime and nighttime D‐region ionosphere. We show that our model identifies expected variations, as well as producing results in line with other previous studies. Additionally, we show that our daytime predictions exhibit a larger autocorrelation at higher time lags than our nighttime predictions, indicating a model with persistence may perform better.

     
    more » « less
  5. Abstract

    Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift.

     
    more » « less