skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.


Title: Small Ponds in Headwater Catchments Are a Dominant Influence on Regional Nutrient and Sediment Budgets
Abstract

Small ponds—farm ponds, detention ponds, or impoundments below 0.01 km2—serve important human needs throughout most large river basins. Yet the role of small ponds in regional nutrient and sediment budgets is essentially unknown, currently making it impossible to evaluate their management potential to achieve water quality objectives. Here we used new hydrography data sets and found that small ponds, depending on their spatial position within both their local catchments and the larger river network, can dominate the retention of nitrogen, phosphorus, and sediment compared to rivers, lakes, and reservoirs. Over 300,000 small ponds are collectively responsible for 34%, 69%, and 12% of the mean annual retention of nitrogen, phosphorus, and sediment in the Northeastern United States, respectively, with a dominant influence in headwater catchments (54%, 85%, and 50%, respectively). Small ponds play a critical role among the many aquatic features in long‐term nutrient and sediment loading to downstream waters.

 
more » « less
NSF-PAR ID:
10372241
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
16
ISSN:
0094-8276
Page Range / eLocation ID:
p. 9669-9677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subterranean estuaries (STEs) form at the land‐sea boundary where groundwater and seawater mix. These biogeochemically reactive zones influence groundwater‐borne nutrient concentrations and speciation prior to export via submarine groundwater discharge (SGD). We examined a STE located along the York River Estuary (YRE) to determine if SGD delivers dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to the overlying water. We assessed variations in STE geochemical profiles with depth across locations, times, and tidal stages, estimated N removal along the STE flow path, measured hydraulic gradients to estimate SGD, and calculated potential nutrient fluxes. Salinity, dissolved oxygen (DO), DIN, and DIP varied significantly with depth and season (p < 0.05), but not location or tidal stage. Ammonium dominated the DIN pool deep in the STE. Moving toward the sediment surface, ammonium concentrations decreased as nitrate and DO concentrations increased, suggesting nitrification. Potential sediment N removal rates mediated by denitrification were <8 mmoles N m−2 d−1. The total groundwater discharge rate was 38 ± 11 L m−2 d−1; discharge followed tidal and seasonal patterns. Net SGD nutrient fluxes were 0.065–3.2 and 0.019–0.093 mmoles m−2 d−1for DIN and DIP, respectively. However, microbial N removal in the STE may attenuate 0.58% to >100% of groundwater DIN. SGD fluxes were on the same order of magnitude as diffusive benthic fluxes but accounted for <10% of the nutrients delivered by fluvial advection in the YRE. Our results indicate the importance of STE biogeochemical transformations to SGD flux estimations and their role in coastal eutrophication and nutrient dynamics.

     
    more » « less
  2. Abstract

    Salinity control, nutrient additions, and sediment supply were directly or indirectly the rationale for a $220 million coastal wetland restoration project (Davis Pond River Diversion) that began in 2002. We sampled Mississippi River water going in and out of the receiving basin from 1999 to 2018 to understand why wetland loss increased after it began. There was a reduction in inorganic sediments, nitrogen (N), and phosphorus (P) concentrations within the ponding area of 77%, 39% and 34%, respectively, which is similar to that in other wetlands. But the average sediment accumulation of 0.6 mm year−1inadequately balances the present-day 5.6 mm year−1sea level rise or the 7.9 ± 0.13 mm year−1accretion rates in these organic soils. Nutrients added likely reduced live belowground biomass and soil strength, and increased decomposition of the organic matter necessary to sustain elevations. The eutrophication of the downstream aquatic system from the diversion, principally by P additions, increased Chlaconcentrations to a category of ‘poor’ water quality. We conclude that this diversion, if continued, will be a negative influence on wetland area and will eutrophy the estuary. It is a case history example for understanding the potential effects arising from proposed river diversions.

     
    more » « less
  3. Nutrient removal by a 4.6-ha urban stormwater treatment wetland system in a 20-ha water/nature park in southwest Florida has been investigated for several years, suggesting that the wetlands are significant sinks of both phosphorus and nitrogen although with a slightly decreased total phosphorus retention in recent years. This study investigates the role of sedimentation on changes in nutrient concentrations and fluxes through these wetlands. Sedimentation bottles along with sediment nutrient analyses every six months allowed us to estimate gross sedimentation rates of 9.9±0.1 cm yr−1 and nutrient sedimentation rates of approximately 7.8 g-P m−2 yr−1 and 81.7 g-Nm−2 yr−1. Using a horizon marker method to account for lack of resuspension in the sedimentation bottles suggested that net nutrient retention by sedimentation may be closer to 1.5 g-Pm−2 yr−1 and 33.2 g-N m−2 yr−1. Annual nutrient retention of the wetland system determined from water quality measurements at the inflow and outflow averaged 4.23 g-P m−2 yr−1 and 11.91 g-N m–2 yr−1, suggesting that sedimentationis a significant pathway for nutrient retention in these urban wetlands and that resuspension is playing a significant role in reintroducing nutrients, especially phosphorus, to the water column. These results also suggest that additional sources of nitrogen not in our current nutrient budgets may be affecting overall nutrient retention. 
    more » « less
  4. Abstract

    In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra‐dominated‐by‐lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment‐associated fractions and in higher‐order reaches during snowmelt. FamiliesChthonomonadaceae,Pyrinomonadaceae, andXiphinematobacteraceaewere abundantly different across seasons, whileFlavobacteriaceaeandMicroscillaceaewere abundantly different between free‐floating and sediment‐associated fractions. Physicochemical data suggested there was high iron (Fe+) production (alpine catchment); Fe+production and chloride (Cl) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4+) production (lake catchment). In tundra landscapes, these ‘hot spots’ of Fe+production and Clremoval accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton‐mineral relations stabilized communities in free‐flowing reaches, but bacterioplankton‐nutrient relations stabilized those punctuated by lakes.

     
    more » « less
  5. Abstract

    Climate warming is affecting the structure and function of river ecosystems, including their role in transforming and transporting carbon (C), nitrogen (N), and phosphorus (P). Predicting how river ecosystems respond to warming has been hindered by a dearth of information about how otherwise well‐studied physiological responses to temperature scale from organismal to ecosystem levels. We conducted an ecosystem‐level temperature manipulation to quantify how coupling of stream ecosystem metabolism and nutrient uptake responded to a realistic warming scenario. A ~3.3°C increase in mean water temperature altered coupling of C, N, and P fluxes in ways inconsistent with single‐species laboratory experiments. Net primary production tripled during the year of experimental warming, while whole‐stream N and P uptake rates did not change, resulting in 289% and 281% increases in autotrophic dissolved inorganic N and P use efficiency (UE), respectively. Increased ecosystem production was a product of unexpectedly large increases in mass‐specific net primary production and autotroph biomass, supported by (i) combined increases in resource availability (via N mineralization and N2fixation) and (ii) elevated resource use efficiency, the latter associated with changes in community structure. These large changes in C and nutrient cycling could not have been predicted from the physiological effects of temperature alone. Our experiment provides clear ecosystem‐level evidence that warming can shift the balance between C and nutrient cycling in rivers, demonstrating that warming will alter the important role of in‐stream processes in C, N, and P transformations. Moreover, our results reveal a key role for nutrient supply and use efficiency in mediating responses of primary producers to climate warming.

     
    more » « less