skip to main content


Title: Sensitivity and Detection Limit of Spectroscopic‐Grade Perovskite CsPbBr 3 Crystal for Hard X‐Ray Detection
Abstract

Spectroscopic‐grade single crystal detectors can register the energies of individual X‐ray interactions enabling photon‐counting systems with superior resolution over traditional photoconductive X‐ray detection systems. Current technical challenges have limited the preparation of perovskite semiconductors for energy‐discrimination X‐ray photon‐counting detection. Here, this work reports the deployment of a spectroscopic‐grade CsPbBr3Schottky detector under reverse bias for continuum hard X‐ray detection in both the photocurrent and spectroscopic schemes. High surface barriers of1 eV are formed by depositing solid bismuth and gold contacts. The spectroscopic response under a hard X‐ray source is assessed in resolving the characteristic X‐ray peak. The methodology in enhancing X‐ray sensitivity by controlling the X‐ray energies and flux, and voltage, is described. The X‐ray sensitivity varies between a few tens to over 8000 μC Gyair−1cm−2. The detectable dose rate of the CsPbBr3detectors is as low as 0.02 nGyairs−1in the energy discrimination configuration. Finally, the unbiased CsPbBr3device forms a spontaneous contact potential difference of about 0.7 V enabling high quality of the CsPbBr3single crystals to operate in “passive” self‐powered X‐ray detection mode and the X‐ray sensitivity is estimated as 14 μC Gyair−1cm−2. The great potential of spectroscopic‐grade CsPbBr3devices for X‐ray photon‐counting systems is anticipated in this work.

 
more » « less
NSF-PAR ID:
10372243
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
24
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The attention focused on the application of organic electronics for the detection of ionizing radiation is rapidly growing among the international scientific community, due to the great potential of organic technology to enable large‐area conformable sensor panels. However, high‐energy photon absorption is challenging as organic materials are constituted of atoms with low atomic numbers. Here it is reported how, by synthesizing new solution‐processable organic molecules derived from 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene, with Ge‐substitution in place of the Si atoms to increase the material atomic number, it is possible to boost the X‐ray detection performance of organic thin films on flexible plastic substrates. Bis(triisopropylgermylethynyl)‐pentacene based flexible organic thin film transistors show high electrical performance with higher mobility (0.4 cm2V−1s−1) and enhanced X‐ray sensitivity, up to 9.0 × 105µC Gy−1cm−3, with respect to TIPS‐pentacene‐based detectors. Moreover, similar results are obtained for 5,11‐bis(triethylgermylethynyl)anthradithiophene devices, confirming that the proposed strategy, that is, increasing the atomic number of organic molecules by chemical tailoring to improve X‐ray sensitivity, can be generalized to organic thin film detectors, combining high X‐ray absorption, mechanical flexibility, and large‐area processing.

     
    more » « less
  2. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost.

    The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition.

    In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs.

    Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness.

    References

    A. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.

    Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).

    V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).

    H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).

    T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019).

     
    more » « less
  3. Abstract

    Organic semiconductors are excellent candidates for X‐ray detectors that can adapt to new applications, with unique properties including mechanical flexibility and the ability to cover large surfaces. Their chemical composition, primarily carbon and hydrogen, makes them human tissue equivalent in terms of radiation absorption. This is a highly desirable property for a radiation dosimeter to be employed in medical diagnostics and therapy, however a low‐Z composition limits the absorption of ionizing radiation. The detection efficiency can be enhanced by considering the photoconductive gain (PG) effect, a significant contributor to the ionizing radiation detection mechanism in this class of materials. In this work, a process of controlled solution deposition by nozzle printing and crystallization of an organic semiconductor thin film is demonstrated whereby a flexible, arrayed thin‐film X‐ray detector with record X‐ray sensitivities among flexible radiation detectors (S = (9.0 ± 0.4) × 107 µC Gy−1cm−3) is developed. The excitonic peaks responsible for the activation of the PG effect are investigated and identified using a novel technique called photocurrent spectroscopy optical quenching, and the analysis of the changes in trap states is further demonstrated.

     
    more » « less
  4. Abstract

    A unique method is presented for the acquisition and analysis of57Fe backscatter Mössbauer spectra with simultaneous detection of the resonant 14.4 keVγ-rays and the characteristic 6.4 keV x-rays, using a custom-built multi-parameter analyser constructed on the basis of commercial analogue to digital converters and high-speed digital latches. The system allows for the simultaneous registration of Doppler-modulation velocities and photon energies, with up to 4096 and 8192 digital channels respectively. This arrangement is in contrast to most related systems, which detect at a single narrow energy window per detector. Samples of arbitrary atomic structure, morphology and surface topography can be studied without altering the setup or the analysis procedure, provided that the samples are at least micrometre sized. The hardware and software that are used to acquire data with minimal dead time are described and the custom and self-contained methods for post-measurement energy discrimination, background correction and velocity-axis folding are discussed. The data are fit using a general Hamiltonian model for the nuclear energy levels of57Fe and a quantum mechanical description of the angular momentum coupling is utilised, with consideration of the crystalline and chemical disorder of the sample under examination. Three examples of distinct magnetic systems, with thicknesses ranging from5μm to 6 mm, that were studied using this method are presented, these are: an amorphous CoFeB-based ribbon with ultra-soft coercivity for high-frequency applications, magnetically hard Nd-Fe-B thick films on Si substrates, examined in both as-deposited and annealed states, and a sample from the nickel-rich iron meteorite NWA 6259 that contains the atomically ordered, elevated coercivity,L10phase of FeNi, tetrataenite. The wide applicability and usefulness of this method is thus demonstrated on three distinct sample morphologies that required little to no surface preparation prior to examination.

     
    more » « less
  5. X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications.

     
    more » « less