skip to main content

Title: Sensitivity and Detection Limit of Spectroscopic‐Grade Perovskite CsPbBr 3 Crystal for Hard X‐Ray Detection
Abstract

Spectroscopic‐grade single crystal detectors can register the energies of individual X‐ray interactions enabling photon‐counting systems with superior resolution over traditional photoconductive X‐ray detection systems. Current technical challenges have limited the preparation of perovskite semiconductors for energy‐discrimination X‐ray photon‐counting detection. Here, this work reports the deployment of a spectroscopic‐grade CsPbBr3Schottky detector under reverse bias for continuum hard X‐ray detection in both the photocurrent and spectroscopic schemes. High surface barriers of1 eV are formed by depositing solid bismuth and gold contacts. The spectroscopic response under a hard X‐ray source is assessed in resolving the characteristic X‐ray peak. The methodology in enhancing X‐ray sensitivity by controlling the X‐ray energies and flux, and voltage, is described. The X‐ray sensitivity varies between a few tens to over 8000 μC Gyair−1cm−2. The detectable dose rate of the CsPbBr3detectors is as low as 0.02 nGyairs−1in the energy discrimination configuration. Finally, the unbiased CsPbBr3device forms a spontaneous contact potential difference of about 0.7 V enabling high quality of the CsPbBr3single crystals to operate in “passive” self‐powered X‐ray detection mode and the X‐ray sensitivity is estimated as 14 μC Gyair−1cm−2. The great potential of spectroscopic‐grade CsPbBr3devices for X‐ray photon‐counting systems is anticipated in this work.

Authors:
 ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10372243
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
24
ISSN:
1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The attention focused on the application of organic electronics for the detection of ionizing radiation is rapidly growing among the international scientific community, due to the great potential of organic technology to enable large‐area conformable sensor panels. However, high‐energy photon absorption is challenging as organic materials are constituted of atoms with low atomic numbers. Here it is reported how, by synthesizing new solution‐processable organic molecules derived from 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene, with Ge‐substitution in place of the Si atoms to increase the material atomic number, it is possible to boost the X‐ray detection performance of organic thin films on flexible plastic substrates. Bis(triisopropylgermylethynyl)‐pentacene based flexible organic thin film transistors show high electrical performance with higher mobility (0.4 cm2V−1s−1) and enhanced X‐ray sensitivity, up to 9.0 × 105µC Gy−1cm−3, with respect to TIPS‐pentacene‐based detectors. Moreover, similar results are obtained for 5,11‐bis(triethylgermylethynyl)anthradithiophene devices, confirming that the proposed strategy, that is, increasing the atomic number of organic molecules by chemical tailoring to improve X‐ray sensitivity, can be generalized to organic thin film detectors, combining high X‐ray absorption, mechanical flexibility, and large‐area processing.

  2. Abstract

    Organic semiconductors are excellent candidates for X‐ray detectors that can adapt to new applications, with unique properties including mechanical flexibility and the ability to cover large surfaces. Their chemical composition, primarily carbon and hydrogen, makes them human tissue equivalent in terms of radiation absorption. This is a highly desirable property for a radiation dosimeter to be employed in medical diagnostics and therapy, however a low‐Z composition limits the absorption of ionizing radiation. The detection efficiency can be enhanced by considering the photoconductive gain (PG) effect, a significant contributor to the ionizing radiation detection mechanism in this class of materials. In this work, a process of controlled solution deposition by nozzle printing and crystallization of an organic semiconductor thin film is demonstrated whereby a flexible, arrayed thin‐film X‐ray detector with record X‐ray sensitivities among flexible radiation detectors (S = (9.0 ± 0.4) × 107 µC Gy−1cm−3) is developed. The excitonic peaks responsible for the activation of the PG effect are investigated and identified using a novel technique called photocurrent spectroscopy optical quenching, and the analysis of the changes in trap states is further demonstrated.

  3. X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications.

  4. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

  5. Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2]·4.5H2O}n(1) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)]·H2O}n(2) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2]·H2O}n(3) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83etbnetwork topology. [Co(ada)(ebin)]n(4) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)]·2H2O}n(5) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound4revealed a decrease inχmTproduct upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g= 2.39(2) withD= 40(3) cm–1andJ= –3.55(4) cm–1]. Compounds1and5undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative1shows potential as a sensor for the solution‐phase detection of nitrobenzene andm‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed.