The attention focused on the application of organic electronics for the detection of ionizing radiation is rapidly growing among the international scientific community, due to the great potential of organic technology to enable large‐area conformable sensor panels. However, high‐energy photon absorption is challenging as organic materials are constituted of atoms with low atomic numbers. Here it is reported how, by synthesizing new solution‐processable organic molecules derived from 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene, with Ge‐substitution in place of the Si atoms to increase the material atomic number, it is possible to boost the X‐ray detection performance of organic thin films on flexible plastic substrates. Bis(triisopropylgermylethynyl)‐pentacene based flexible organic thin film transistors show high electrical performance with higher mobility (0.4 cm2V−1s−1) and enhanced X‐ray sensitivity, up to 9.0 × 105µC Gy−1cm−3, with respect to TIPS‐pentacene‐based detectors. Moreover, similar results are obtained for 5,11‐bis(triethylgermylethynyl)anthradithiophene devices, confirming that the proposed strategy, that is, increasing the atomic number of organic molecules by chemical tailoring to improve X‐ray sensitivity, can be generalized to organic thin film detectors, combining high X‐ray absorption, mechanical flexibility, and large‐area processing.
Spectroscopic‐grade single crystal detectors can register the energies of individual X‐ray interactions enabling photon‐counting systems with superior resolution over traditional photoconductive X‐ray detection systems. Current technical challenges have limited the preparation of perovskite semiconductors for energy‐discrimination X‐ray photon‐counting detection. Here, this work reports the deployment of a spectroscopic‐grade CsPbBr3Schottky detector under reverse bias for continuum hard X‐ray detection in both the photocurrent and spectroscopic schemes. High surface barriers of
- NSF-PAR ID:
- 10372243
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 24
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications.
-
Abstract Organic semiconductors are excellent candidates for X‐ray detectors that can adapt to new applications, with unique properties including mechanical flexibility and the ability to cover large surfaces. Their chemical composition, primarily carbon and hydrogen, makes them human tissue equivalent in terms of radiation absorption. This is a highly desirable property for a radiation dosimeter to be employed in medical diagnostics and therapy, however a low‐Z composition limits the absorption of ionizing radiation. The detection efficiency can be enhanced by considering the photoconductive gain (PG) effect, a significant contributor to the ionizing radiation detection mechanism in this class of materials. In this work, a process of controlled solution deposition by nozzle printing and crystallization of an organic semiconductor thin film is demonstrated whereby a flexible, arrayed thin‐film X‐ray detector with record X‐ray sensitivities among flexible radiation detectors (S = (9.0 ± 0.4) × 107 µC Gy−1cm−3) is developed. The excitonic peaks responsible for the activation of the PG effect are investigated and identified using a novel technique called photocurrent spectroscopy optical quenching, and the analysis of the changes in trap states is further demonstrated.
-
Abstract Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4]−(
1 ), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1 by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1 , here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1 and formally Cu(I) complexes like (Ph3P)3CuCF3(3 ). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1 is best described as containing a Cu(I) ion with dncount approaching 10. -
Abstract Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4]−(
1 ), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1 by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1 , here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1 and formally Cu(I) complexes like (Ph3P)3CuCF3(3 ). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1 is best described as containing a Cu(I) ion with dncount approaching 10.