skip to main content


Title: Constraints on Marine Isotope Stage 3 and 5 Sea Level From the Flooding History of the Karimata Strait in Indonesia
Abstract

Global mean sea level (GMSL) during intermediate interglacial Marine Isotope Stage 3 (MIS 3) (60–26 ka) has proven difficult to constrain. Paleo‐sea level estimates based on ice margin, modeling, and paleo‐shoreline reconstructions indicate that MIS 3 GMSL was substantially higher than reconstructed from deep‐ocean benthic foraminifera oxygen isotope (δ18O) and coral records, implying much smaller ice sheets during MIS 3. Here, we use the δ18O and Mg/Ca chemistry of surface and thermocline dwelling foraminifera in the Sulu Sea in the western Pacific margin to estimate relative changes of the influx of South China Sea surface flow through the Sulu Sea over the last 140 ka. We show that this South China Sea throughflow is controlled in part by changes in GMSL modulating the depth of the 36 m deep Karimata Strait at the southern end of the South China Sea. We constrain maximum allowable GMSL at the beginning and end of MIS 3 to −22 ± 6 and −29 ± 5 m, respectively, and minimum allowable GMSL during interglacial stages MIS 5c and 5a (117–72 ka) to range from −3 ± 8 to −8 ± 8 m and −11 ± 7 to −12 ± 7 m, respectively. Our results constrain MIS 3 GMSL, but do not rule out higher MIS 3 ice margin, modeling, and paleo‐shoreline‐based MIS 3 GMSL estimates or lower coral and seawater δ18O‐based estimates. Our results favor the highest MIS 5a and 5c GMSL estimates and confirm that the Sunda Shelf served as a land‐bridge for human and megafauna migration during MIS 3 when humans first arrived in Borneo.

 
more » « less
NSF-PAR ID:
10372270
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
9
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Estimates of ice volume over the last 120 ka, from marine isotope Stage (MIS) 5d (∼110 ka) through MIS 3 (60–26 ka) are uncertain. Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) offer an innovative new constraint on past sea level using the oxygen isotopes (δ18O) of planktic (surface and thermocline dwelling) foraminifers to infer the salinity of the Sulu Sea in the Indo‐Pacific Ocean and assess flow through the Karimata Strait (Indonesia) over the last glaciation. Based on the timing of Karimata Strait flooding, the study concludes that local relative sea level in the Karimata Strait was >−8  6 m during MIS 5c (∼100 ka) and >−12  6 m during MIS 5a (∼80 ka), relative to present. For MIS 3, a maximum possible relative sea level of −16  6 m is determined. Here, these results are placed into the context of current knowledge of last glacial sea‐level change and the implications for climate forcings and feedbacks (e.g., global average surface temperature and greenhouse gases) and ice sheet growth are discussed. By tracing past ocean circulation patterns that are modulated by the depth of shallow straits such as the Karimata Strait, Weiss et al. (2022,https://doi.org/10.1029/2021PA004361) provide independent constraints on local sea level, which are essential for improving global mean sea level reconstructions on late Pleistocene glacial‐interglacial cycles.

     
    more » « less
  2. Abstract

    Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest global sea level ~410–400 ka. MIS 11 has received extensive study on the causes of its long duration and warmer than Holocene climate, which is anomalous in the last half million years. However, a major geographic gap in MIS 11 proxy records exists in the Arctic Ocean where fragmentary evidence exists for a seasonally sea ice‐free summers and high sea‐surface temperatures (SST; ~8–10 °C near the Mendeleev Ridge). We investigated MIS 11 in the western and central Arctic Ocean using 12 piston cores and several shorter cores using proxies for surface productivity (microfossil density), bottom water temperature (magnesium/calcium ratios), the proportion of Arctic Ocean Deep Water versus Arctic Intermediate Water (key ostracode species), sea ice (epipelagic sea ice dwelling ostracode abundance), and SST (planktic foraminifers). We produced a new benthic foraminiferal δ18O curve, which signifies changes in global ice volume, Arctic Ocean bottom temperature, and perhaps local oceanographic changes. Results indicate that peak warmth occurred in the Amerasian Basin during the middle of MIS 11 roughly from 410 to 400 ka. SST were as high as 8–10 °C for peak interglacial warmth, and sea ice was absent in summers. Evidence also exists for abrupt suborbital events punctuating the MIS 12‐MIS 11‐MIS 10 interval. These fluctuations in productivity, bottom water temperature, and deep and intermediate water masses (Arctic Ocean Deep Water and Arctic Intermediate Water) may represent Heinrich‐like events possibly involving extensive ice shelves extending off Laurentide and Fennoscandian Ice Sheets bordering the Arctic.

     
    more » « less
  3. Abstract

    Despite decades of research, the cause of deglaciations is not fully understood, leaving a critical gap in our understanding of Earth's climate system. During the most recent deglaciation (Termination I (T I)), abrupt declines in the stable carbon isotope ratio (δ13C) of benthic foraminifera occurred throughout the mid‐depth (1,500–2,500 m) Atlantic. The spatial pattern in δ13C anomalies was likely due to Atlantic Meridional Overturning Circulation (AMOC) weakening and the accumulation of respired carbon, which also yields negative excursions in carbonate ion concentration (). To investigate whether a similar pattern occurred during prior deglaciations, we developed δ13C and records from 1,800 and 2,300 m water depth in the Southwest Atlantic spanning the last 150 ka. The new records reveal negative δ13C and anomalies during Termination II (TII) and the smaller deglaciations of Marine Isotope Stages (MIS) 4/3, 5b/a, and 5d/c, suggesting AMOC weakening is a common feature of deglaciation. The anomalies are more pronounced in the shallower core following MIS 2, 4, and 6 and in the deeper core following MIS 5b and 5d. The depth‐dependent pattern is most likely due to shoaling of Northern Source Water during glacial maxima and deepening during interglacial intervals. Comparison of records from TI and TII suggests similar levels of carbon accumulation in the mid‐depth Atlantic. The Brazil Margin δ13C and results indicate the AMOC plays a key role in the series of events causing deglaciation, regardless of differences in orbital configuration, ice volume, and mean global temperature.

     
    more » « less
  4. Glacial isostatic adjustment (GIA) simulations using earth models that vary viscoelastic structure with depth alone cannot simultaneously fit geographic trends in the elevation of marine isotope stage (MIS) 5a relative sea level (RSL) indicators across continental North America and the Caribbean and yield conflicting estimates of global mean sea level (GMSL). We present simulations with a GIA model that incorporates three-dimensional (3-D) variation in North American viscoelastic earth structure constructed by combining high-resolution seismic tomographic imaging with a new method for mapping this imaging into lateral variations in lithospheric thickness and mantle viscosity. We pair this earth model with a global ice history based on updated constraints on ice volume and geometry. The GIA prediction provides the first simultaneous reconciliation of MIS 5a North American and Caribbean RSL highstands and strengthens arguments that MIS 5a peak GMSL reached values close to that of the Last Interglacial. This result highlights the necessity of incorporating realistic 3-D earth structure into GIA predictions with continent-scale RSL data sets. 
    more » « less
  5. Abstract

    Vertical profiles of benthic foraminiferal oxygen and carbon isotopes (δ18O and δ13C) imply the volume of southern source water (SSW) in the Atlantic basin expanded during the Last Glacial Maximum. Shoaling of the boundary between SSW and northern source water (NSW) may reduce mixing between the two watermasses, thereby isolating SSW and enhancing its ability to store carbon during glacial intervals. Here we test this hypothesis using profiles of δ18O and δ13C from the Brazil Margin spanning the last glacial cycle (0–150 ka). Shoaling of the SSW‐NSW boundary occurred during Marine Isotope Stage (MIS) 2, 4, and 6, consistent with expansion of SSW and greater carbon sequestration in the abyss. But the watermass boundary also shoaled during MIS 5e, when atmospheric CO2levels were comparable to MIS 1. Additionally, we find there was little change in watermass structure across the MIS 5e‐d transition, the first major decline in CO2of the last glacial cycle. Thus, the overall pattern in glacial‐interglacial geometry is inconsistent with watermass mixing acting as a primary control on atmospheric pCO2. We also find that δ13C values for MIS 5e are systematically lower than MIS 1, with the largest difference (∼1‰) occurring in the upper water column. Low δ13C during MIS 5e was most likely due to a long‐term imbalance in weathering and deposition of calcium carbonate or input of13C‐depleted carbon from a reservoir external to the ocean‐atmosphere system.

     
    more » « less