skip to main content


Title: Remote sensing of ploidy level in quaking aspen ( Populus tremuloides Michx.)
Abstract

Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods.

We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods.

We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen's kappa ofc.0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales.

Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species' responses to climate change.

 
more » « less
Award ID(s):
1832109 1832170
NSF-PAR ID:
10372292
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
108
Issue:
1
ISSN:
0022-0477
Page Range / eLocation ID:
p. 175-188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species responses to climate change depend on environment, genetics, and interactions among these factors. Intraspecific cytotype (ploidy level) variation is a common type of genetic variation in many species. However, the importance of intraspecific cytotype variation in determining demography across environments is poorly known. We studied quaking aspen (Populus tremuloides), which occurs in diploid and triploid cytotypes. This widespread tree species is experiencing contractions in its western range, which could potentially be linked to cytotype‐dependent drought tolerance. We found that interactions between cytotype and environment drive mortality and recruitment across 503 plots in Colorado. Triploids were more vulnerable to mortality relative to diploids and had reduced recruitment on more drought‐prone and disturbed plots relative to diploids. Furthermore, there was substantial genotype‐dependent variation in demography. Thus, cytotype and genotype variation are associated with decline in this foundation species. Future assessment of demographic responses to climate change will benefit from knowledge of how genetic and environmental mosaics interact to determine species’ ecophysiology and demography.

     
    more » « less
  2. Abstract

    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high‐resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground‐measured LAI (r = 0.32) and AOP Total Biomass and ground‐measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least‐squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP‐derived data products should not be used without extensive ground‐based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field‐based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in‐situ field measurements across a diversity of sites.

     
    more » « less
  3. Abstract

    Despite broad recognition that water is a major limiting factor in arid ecosystems, we lack an empirical understanding of how this resource is shared and distributed among neighbouring plants. Intraspecific variability can further contribute to this variation via divergent life‐history traits, including root architecture. We investigated these questions in the shrubArtemisia tridentataand hypothesized that the ability to access and utilize surface water varies among subspecies and cytotypes.

    We used an isotope tracer to quantify below‐ground zone of influence inA. tridentata, and tested whether spatial neighbourhood characteristics can alter plant water uptake. We introduced deuterium‐enriched water to the soil in plant interspaces in a common garden experiment and measured deuterium composition of plant stems. We then applied spatially explicit models to test for differential water uptake byA. tridentata, including intermingled populations of three subspecies and two ploidy levels.

    The results suggest that lateral root functioning inA. tridentatais associated with intraspecific identity and ploidy level. Subspecies adapted to habitats with deep soils generally had a smaller horizontal reach, and polyploid cytotypes were associated with greater water uptake compared to their diploid variants. We also found that plant crown volume was a weak predictor of water uptake, and that neighbourhood crowding had no discernable effect on water uptake.

    Intraspecific variation in lateral root functioning can lead to differential patterns of resource acquisition, an essential process in arid ecosystems in the contexts of changing climate and seasonal patterns of precipitation. Altogether, we found that lateral root development and activity are more strongly related to genetic variability withinA. tridentatathan to plant size. Our study highlights how intraspecific variation in life strategies is linked to mechanisms of resource acquisition.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.

    We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.

    Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.

    Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.

    We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.

    Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.

    Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.

    Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.

     
    more » « less