skip to main content


Title: Migration Traps as the Root Cause of the Kepler Dichotomy
Abstract

It is often assumed that the “Kepler dichotomy”—the apparent excess of planetary systems with a single detected transiting planet in the Kepler catalog—reflects an intrinsic bimodality in the mutual inclinations of planetary orbits. After conducting 600 simulations of planet formation followed by simulated Kepler observations, we instead propose that the apparent dichotomy reflects a divergence in the amount of migration and the separation of planetary semimajor axes into distinct “clusters.” We find that our simulated high-mass systems migrate rapidly, bringing more planets into orbital periods of less than 200 days. The outer planets are often caught in a migration trap—a range of planet masses and locations in which a dominant corotation torque prevents inward migration—which splits the system into two clusters. If clusters are sufficiently separated, the inner cluster remains dynamically cold, leading to low mutual inclinations and a higher probability of detecting multiple transiting planets. Conversely, our simulated low-mass systems typically bring fewer planets within 200 days, forming a single cluster that quickly becomes dynamically unstable, leading to collisions and high mutual inclinations. We propose an alternative explanation for the apparent Kepler dichotomy in which migration traps during formation lead to fewer planets within the Kepler detection window, and where mutual inclinations play only a secondary role. If our scenario is correct, then Kepler’s Systems with Tightly packed Inner Planets are a sample of planets that escaped capture by corotation traps, and their sizes may be a valuable probe into the structure of protoplanetary disks.

 
more » « less
NSF-PAR ID:
10372353
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
937
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 53
Size(s):
["Article No. 53"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a catalog of stellar companions to host stars of Transiting Exoplanet Survey Satellite Objects of Interest (TOIs) identified from a marginalized likelihood ratio test that incorporates astrometric data from the Gaia Early Data Release 3 catalog (EDR3). The likelihood ratio is computed using a probabilistic model that incorporates parallax and proper-motion covariances and marginalizes the distances and 3D velocities of stars in order to identify comoving stellar pairs. We find 172 comoving companions to 170 non-false-positive TOI hosts, consisting of 168 systems with two stars and 2 systems with three stars. Among the 170 TOI hosts, 54 harbor confirmed planets that span a wide range of system architectures. We conduct an investigation of the mutual inclinations between the stellar companion and planetary orbits using Gaia EDR3, which is possible because transiting exoplanets must orbit within the line of sight; thus, stellar companion kinematics can constrain mutual inclinations. While the statistical significance of the current sample is weak, we find that7320+14%of systems with Kepler-like architectures (RP≤ 4Randa< 1 au) appear to favor a nonisotropic orientation between the planetary and companion orbits with a typical mutual inclinationαof 35° ± 24°. In contrast,6535+20% of systems with close-in giants (P< 10 days andRP> 4R) favor a perpendicular geometry (α= 89° ± 21°) between the planet and companion. Moreover, the close-in giants with large stellar obliquities (planet–host misalignment) are also those that favor significant planet–companion misalignment.

     
    more » « less
  2. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
    more » « less
  3. Abstract Systems with ultra-short-period (USP) planets tend to possess larger mutual inclinations compared to those with planets located farther from their host stars. This could be explained due to precession caused by stellar oblateness at early times when the host star was rapidly spinning. However, stellar oblateness reduces over time due to the decrease in the stellar rotation rate, and this may further shape the planetary mutual inclinations. In this work, we investigate in detail how the final mutual inclination varies under the effect of a decreasing J 2 . We find that different initial parameters (e.g., the magnitude of J 2 and planetary inclinations) will contribute to different final mutual inclinations, providing a constraint on the formation mechanisms of USP planets. In general, if the inner planets start in the same plane as the stellar equator (or coplanar while misaligned with the stellar spin axis), the mutual inclination decreases (or increases then decreases) over time due to the decay of the J 2 moment. This is because the inner orbit typically possesses less orbital angular momentum than the outer ones. However, if the outer planet is initially aligned with the stellar spin while the inner one is misaligned, the mutual inclination nearly stays the same. Overall, our results suggest that either USP planets formed early and acquired significant inclinations (e.g., ≳30° with its companion or ≳10° with its host star spin axis for Kepler-653 c) or they formed late (≳Gyr) when their host stars rotated slower. 
    more » « less
  4. Abstract

    Before the launch of the Kepler Space Telescope, models of low-mass planet formation predicted that convergent type I migration would often produce systems of low-mass planets in low-order mean-motion resonances. Instead, Kepler discovered that systems of small planets frequently have period ratios larger than those associated with mean-motion resonances and rarely have period ratios smaller than those associated with mean-motion resonances. Both short-timescale processes related to the formation or early evolution of planetary systems and long-timescale secular processes have been proposed as explanations for these observations. Using a thin disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that Kepler-discovered multiple-planet systems with at least one planet pair near a period ratio suggestive of a second-order mean-motion resonance have a colder Galactic velocity dispersion and are therefore younger than both single-transiting and multiple-planet systems that lack planet pairs consistent with mean-motion resonances. We argue that a nontidal secular process with a characteristic timescale no less than a few hundred Myr is responsible for moving systems of low-mass planets away from second-order mean-motion resonances. Among systems with at least one planet pair near a period ratio suggestive of a first-order mean-motion resonance, only the population of systems likely affected by tidal dissipation inside their innermost planets has a small Galactic velocity dispersion and is therefore young. We predict that period ratios suggestive of mean-motion resonances are more common in young systems with 10 Myr ≲τ≲ 100 Myr and become less common as planetary systems age.

     
    more » « less
  5. Abstract

    Exoplanet systems with multiple transiting planets are natural laboratories for testing planetary astrophysics. One such system is HD 191939 (TOI 1339), a bright (V= 9) and Sun-like (G9V) star, which TESS found to host three transiting planets (b, c, and d). The planets have periods of 9, 29, and 38 days each with similar sizes from 3 to 3.4R. To further characterize the system, we measured the radial velocity (RV) of HD 191939 over 415 days with Keck/HIRES and APF/Levy. We find thatMb= 10.4 ± 0.9MandMc= 7.2 ± 1.4M, which are low compared to most known planets of comparable radii. The RVs yield only an upper limit onMd(<5.8Mat 2σ). The RVs further reveal a fourth planet (e) with a minimum mass of 0.34 ± 0.01MJupand an orbital period of 101.4 ± 0.4 days. Despite its nontransiting geometry, secular interactions between planet e and the inner transiting planets indicate that planet e is coplanar with the transiting planets (Δi< 10°). We identify a second high-mass planet (f) with 95% confidence intervals on mass between 2 and 11MJupand period between 1700 and 7200 days, based on a joint analysis of RVs and astrometry from Gaia and Hipparcos. As a bright star hosting multiple planets with well-measured masses, HD 191939 presents many options for comparative planetary astronomy, including characterization with JWST.

     
    more » « less