skip to main content


Title: Development of a Multi‐Region Power System Risk Management Model for Supporting China's Carbon Neutrality Ambition in 2060s
Abstract

In order to peak emissions before 2030 and to achieve the net‐zero ambition around 2060, China urgently needs to accelerate low‐carbon transition, especially in the power system. Previous studies were mainly focused on deterministic optimization, with some of them being followed by sensitivity analyses. To tackle the gaps and to support the net‐zero ambition, this study develops a multi‐region power system risk management (MPRM) model to analyze composite effects of renewable energy development and inter‐regional electricity transmission under uncertainties, and their combinations to achieve carbon neutrality by 2060. In detail, MPRM can (a) reveal the downward trend in costs of renewable energy and the increasing in inter‐regional electricity transmission; (b) tackle the uncertainties expressed as intervals; (c) support the low‐carbon transition of the power system. Under the renewable‐dominated power structure, 90% of China's electricity demands can be derived from non‐fossil sources by 2060. Inter‐regional electricity transmission will continue to expand due to the dramatic decreases in the costs of renewables and fast‐growing demands for electricity. Northwest and east regions will be the main exporter and importer of renewable electricity. Carbon emissions from power system will peak in 2030 (about 6.21% above the 2020 level) and be eliminated by 96% (of 2030 levels) by 2060. These results can provide support for expansion of renewable capacities, acceleration of low‐carbon transition in power structure, elimination of barriers in electricity trading across regions, and exploration of the trade‐off between system costs and risk.

 
more » « less
NSF-PAR ID:
10372391
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
10
Issue:
9
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.

     
    more » « less
  2. null (Ed.)
    Executive Summary ● As the Biden-Harris administration recommits the US to the Paris Agreement, a robust national net zero emissions strategy, integrated with local and corporate decarbonization targets, will ensure the nation achieves its climate goals. A new nationwide survey of current net zero climate commitments reveals the following: ● The US has a broad foundation of local net zero ambition on which to build a robust national decarbonization pathway. At least 53% of Americans live in a jurisdiction with a subnational net zero target. Furthermore, US companies accounting for at least $5.2 trillion in yearly sales have committed to net zero. ● Discrepancies in the quality of these targets highlight the need for strong federal leadership to raise the bar for existing subnational and corporate targets and spur further ambition to meet the goals laid out in the Paris Agreement.1 ● Existing state, local and private sector targets require improved alignment in governance mechanisms, consideration of equity and use of offsets. ● To achieve net zero emissions in the US by 2050 in an equitable, just, and leastcost manner, the White House Climate Task Force and Congress should enact policies to strategically strengthen and grow subnational and corporate ambition. In conjunction, subnational and corporate actors must continue to set and improve upon existing targets. ● Our empirical findings indicate a strong basis of support for federal policymakers to implement a robust national net zero strategy. Four key policies will enable government leaders to connect ambition to action: ○ Pledge: Include a robust net zero pledge in the US’ Nationally Determined Contribution (NDC) submission that exceeds the United Nations Framework Convention on Climate Change (UNFCCC) Race to Zero minimum criteria and adopts key leadership practices. These practices include creating a pledge that is codified in law, covers all greenhouse gases across operations and supply chains and includes an interim target of 50% emissions reductions by 2030. ○ Plan: Publish a national net zero roadmap that includes considerations of equity and justice and places constraints on the role of offsets. ○ Proceed: Align economic recovery spending with the aims of the net zero target, develop sector-specific net zero benchmarks and template strategies and mandate net zero alignment as a condition for federal bailouts. ○ Publish: Publish an annual national progress report that includes the progress of subnational commitments. 
    more » « less
  3. null (Ed.)
    Abstract If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hours (83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation. 
    more » « less
  4. Abstract

    As regional grids increase penetrations of variable renewable electricity (VRE) sources, demand-side management (DSM) presents an opportunity to reduce electricity-related emissions by shifting consumption patterns in a way that leverages the large diurnal fluctuations in the emissions intensity of the electricity fleet. Here we explore residential precooling, a type of DSM designed to shift the timing of air-conditioning (AC) loads from high-demand periods to periods earlier in the day, as a strategy to reduce peak period demand, CO2emissions, and residential electricity costs in the grid operated by the California Independent System Operator (CAISO). CAISO provides an interesting case study because it generally has high solar generation during the day that is replaced by fast-ramping natural gas generators when it drops off suddenly in the early evening. Hence, CAISO moves from a fleet of generators that are primarily clean and cheap to a generation fleet that is disproportionately emissions-intensive and expensive over a short period of time, creating an attractive opportunity for precooling. We use EnergyPlus to simulate 480 distinct precooling schedules for four single-family homes across California’s 16 building climate zones. We find that precooling a house during summer months in the climate zone characterizing Downtown Los Angeles can reduce peak period electricity consumption by 1–4 kWh d−1and cooling-related CO2emissions by as much as 0.3 kg CO2 d−1depending on single-family home design. We report results across climate zone and single-family home design and show that precooling can be used to achieve simultaneous reductions in emissions, residential electricity costs, and peak period electricity consumption for a variety of single-family homes and locations across California.

     
    more » « less
  5. Abstract

    Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.

     
    more » « less