In order to peak emissions before 2030 and to achieve the net‐zero ambition around 2060, China urgently needs to accelerate low‐carbon transition, especially in the power system. Previous studies were mainly focused on deterministic optimization, with some of them being followed by sensitivity analyses. To tackle the gaps and to support the net‐zero ambition, this study develops a multi‐region power system risk management (MPRM) model to analyze composite effects of renewable energy development and inter‐regional electricity transmission under uncertainties, and their combinations to achieve carbon neutrality by 2060. In detail, MPRM can (a) reveal the downward trend in costs of renewable energy and the increasing in inter‐regional electricity transmission; (b) tackle the uncertainties expressed as intervals; (c) support the low‐carbon transition of the power system. Under the renewable‐dominated power structure, 90% of China's electricity demands can be derived from non‐fossil sources by 2060. Inter‐regional electricity transmission will continue to expand due to the dramatic decreases in the costs of renewables and fast‐growing demands for electricity. Northwest and east regions will be the main exporter and importer of renewable electricity. Carbon emissions from power system will peak in 2030 (about 6.21% above the 2020 level) and be eliminated by 96% (of 2030 levels) by 2060. These results can provide support for expansion of renewable capacities, acceleration of low‐carbon transition in power structure, elimination of barriers in electricity trading across regions, and exploration of the trade‐off between system costs and risk.
more » « less- PAR ID:
- 10372391
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hours (83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation.more » « less
-
Abstract China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.
-
Abstract High fractions of variable renewable electricity generation have challenged grid management within the balancing authority overseen by the California’s Independent System Operator (CAISO). In the early evening, solar resources tend to diminish as the system approaches peak demand, putting pressure on fast-responding, emissions-intensive natural gas generators. While residential precooling, a strategy intended to shift the timing of air-conditioning usage from peak-demand periods to cheaper off-peak periods, has been touted in the literature as being effective for reducing peak electricity usage and costs, we explore its impact on CO2emissions in regional grids like CAISO that have large disparities in their daytime versus nighttime emissions intensities. Here we use EnergyPlus to simulate precooling in a typical U.S. single-family home in California climate zone 9 to quantify the impact of precooling on peak electricity usage, CO2emissions, and residential utility costs. We find that replacing a constant-setpoint cooling schedule with a precooling schedule can reduce peak period electricity consumption by 57% and residential electricity costs by nearly 13%, while also reducing CO2emissions by 3.5%. These results suggest the traditional benefits of precooling can be achieved with an additional benefit of reducing CO2emissions in grids with high daytime renewable energy penetrations.
-
Abstract We evaluate how the availability of carbon capture (CC) in a networked electricity system affects the emissions of both carbon and of co-pollutants, under a range of plausible technical, economic, and policy scenarios about CC technology, the pace of renewable deployment, the structure of the power grid, and climate policy. We employ a Power Flow model of a three-node, mixed-source network in which fossil fuel power plants may invest in CC via retrofit. Our stylized model retains some of the complexities of a real power system while allowing for a detailed analysis of the impact of power plant operations and transmission constraints. We find that, in a networked system, the availability of CC may lead some generation to move from natural gas to coal, thus leading to a significant increase in co-pollutants. This is of particular concern during the mid-transition, a period when both carbon and non-carbon electrical generation is active. The introduction of CC can lead to an increase in co-pollution even as the energy system transitions toward renewable energy and, surprisingly, co-pollution outcomes can be worse under a stronger decarbonization policy. This insight is important and timely in light of recent rules incentivizing the use of CC. Systems in the early stages of the energy transition may experience an increase in co-pollution if the co-pollutant dynamics are not considered in the first steps of CC policy design.
-
Abstract China has large, estimated potential for direct air carbon capture and storage (DACCS) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCS for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCS could expand China’s negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO2yr−1DACCS may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China’s northern provinces. Investment requirements for DACCS range from $330 to $530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCS deployment could reduce by up to $6 trillion over the same period. Enhanced efforts to lower residual CO2emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCS for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China.