Abstract Producer–decomposer interactions within aquatic biofilms can range from mutualistic associations to competition depending on available resources. The outcomes of such interactions have implications for biogeochemical cycling and, as such, may be especially important in northern peatlands, which are a global carbon sink and are expected to experience changes in resource availability with climate change. The purpose of this study was to evaluate the effects of nutrients and organic carbon on the relative proportion of primary producers (microalgae) and heterotrophic decomposers (bacteria and fungi) during aquatic biofilm development in a boreal peatland. Given that decomposers are often better competitors for nutrients than primary producers in aquatic ecosystems, we predicted that labile carbon subsidies would shift the biofilm composition towards heterotrophy owing to the ability of decomposers to outcompete primary producers for available nutrients in the absence of carbon limitation.We manipulated nutrients (nitrate and phosphate) and organic carbon (glucose) in a full factorial design using nutrient‐diffusing substrates in an Alaskan fen.Heterotrophic bacteria were limited by organic carbon and algae were limited by inorganic nutrients. However, the outcomes of competitive interactions depended on background nutrient levels. Heterotrophic bacteria were able to outcompete algae for available nutrients when organic carbon was elevated and nutrient levels remained low, but not when organic carbon and nutrients were both elevated through enrichment.Fungal biomass was significantly lower in the presence of glucose alone, possibly owing to antagonistic interactions with heterotrophic bacteria. In contrast to bacteria, fungi were stimulated along with algae following nutrient enrichment.The decoupling of algae and heterotrophic bacteria in the presence of glucose alone shifted the biofilm trophic status towards heterotrophy. This effect was overturned when nutrients were enriched along with glucose, owing to a subsequent increase in algal biomass in the absence of nutrient limitation.By measuring individual components of the biofilm and obtaining data on the trophic status, we have begun to establish a link between resource availability and biofilm formation in northern peatlands. Our results show that labile carbon subsidies from outside sources have the potential to disrupt microbial coupling and shift the metabolic balance in favour of heterotrophy. The extent to which this occurs in the future will probably depend on the timing and composition of bioavailable nutrients delivered to surface waters with environmental change (e.g. permafrost thaw).
more »
« less
Letter: Trophic interactions regulate peatland carbon cycling
Abstract Peatlands are the most efficient natural ecosystems for long‐term storage of atmospheric carbon. Our understanding of peatland carbon cycling is based entirely on bottom‐up controls regulated by low nutrient availability. Recent studies have shown that top‐down controls through predator‐prey dynamics can influence ecosystem function, yet this has not been evaluated in peatlands to date. Here, we used a combination of nutrient enrichment and trophic‐level manipulation to test the hypothesis that interactions between nutrient availability (bottom‐up) and predation (top‐down) influence peatland carbon fluxes. Elevated nutrients stimulated bacterial biomass and organic matter decomposition. In the absence of top‐down regulation, carbon dioxide (CO2) respiration driven by greater decomposition was offset by elevated algal productivity. Herbivores accelerated CO2emissions by removing algal biomass, while predators indirectly reduced CO2emissions by muting herbivory in a trophic cascade. This study demonstrates that trophic interactions can mitigate CO2emissions associated with elevated nutrient levels in northern peatlands.
more »
« less
- Award ID(s):
- 1651195
- PAR ID:
- 10372405
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- p. 781-790
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present‐day greenhouse gas (GHG) budgets. We compare bottom‐up (data‐driven upscaling and process‐based models) and top‐down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom‐up approaches estimate higher land‐to‐atmosphere fluxes for all GHGs. Both bottom‐up and top‐down approaches show a sink of CO2in natural ecosystems (bottom‐up: −29 (−709, 455), top‐down: −587 (−862, −312) Tg CO2‐C yr−1) and sources of CH4(bottom‐up: 38 (22, 53), top‐down: 15 (11, 18) Tg CH4‐C yr−1) and N2O (bottom‐up: 0.7 (0.1, 1.3), top‐down: 0.09 (−0.19, 0.37) Tg N2O‐N yr−1). The combined global warming potential of all three gases (GWP‐100) cannot be distinguished from neutral. Over shorter timescales (GWP‐20), the region is a net GHG source because CH4dominates the total forcing. The net CO2sink in Boreal forests and wetlands is largely offset by fires and inland water CO2emissions as well as CH4emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process‐based models and the compilation of process‐model ensembles for CH4and N2O. Discrepancies between bottom‐up and top‐down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well‐distributed in situ GHG measurements and improved resolution in upscaling techniques.more » « less
-
Abstract Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2, and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post‐thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post‐thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2and CH4 fluxes from decomposition. Thus, the increased C‐storage expected from higher productivity was limited and the high global warming potential of CH4contributed a net positive warming effect. Although post‐thaw peatlands are currently C sinks due to high NPP offsetting high CO2release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.more » « less
-
Abstract Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes.more » « less
-
Abstract The current paradigm in peatland ecology is that the organic matter inputs from plant photosynthesis (e.g. moss litter) exceed that of decomposition, tipping the metabolic balance in favour of carbon (C) storage. Here, we investigated an alternative hypothesis, whereby exudates released by microalgae can actually accelerate C losses from the surface waters of northern peatlands by stimulating dissolved organic C (DOC) decomposition in a warmer environment expected with climate change. To test this hypothesis, we evaluated the biodegradability of fenDOCin a factorial design with and without algalDOCin both ambient (15°C) and elevated (20°C) water temperatures during a laboratory bioassay.WhenDOCsources were evaluated separately, decomposition rates were higher in treatments with algalDOConly than with fenDOConly, indicating that the quality of the organic matter influenced degradability. A mixture of substrates (½ algalDOC + ½ fenDOC) exceeded the expected level of biodegradation (i.e. the average of the individual substrate responses) by as much as 10%, and the magnitude of this effect increased to more than 15% with warming.Specific ultraviolet absorbance at 254 nm (SUVA254), a proxy for aromatic content, was also significantly higher (i.e. more humic) in the mixture treatment than expected from SUVA254values in single substrate treatments.Accelerated decomposition in the presence of algalDOCwas coupled with an increase in bacterial biomass, demonstrating that enhanced metabolism was associated with a more abundant microbial community.These results present an alternative energy pathway for heterotrophic consumers to breakdown organic matter in northern peatlands. Since decomposition in northern peatlands is often limited by the availability of labile organic matter, this mechanism could become increasingly important as a pathway for decomposition in the surface waters of northern peatlands where algae are expected to be more abundant in conditions associated with ongoing climate change.more » « less