Given a suitable solution
Flows in the atmospheric boundary layer are turbulent, characterized by a large Reynolds number, the existence of a roughness sublayer and the absence of a welldefined viscous layer. Exchanges with the surface are therefore dominated by turbulent fluxes. In numerical models for atmospheric flows, turbulent fluxes must be specified at the surface; however, surface fluxes are not known a priori and therefore must be parametrized. Atmospheric flow models, including global circulation, limited area models, and largeeddy simulation, employ Monin–Obukhov similarity theory (MOST) to parametrize surface fluxes. The MOST approach is a semiempirical formulation that accounts for atmospheric stability effects through universal stability functions. The stability functions are determined based on limited observations using simple regression as a function of the nondimensional stability parameter representing a ratio of distance from the surface and the Obukhov length scale (Obukhov in Trudy Inst Theor Geofiz AN SSSR 1:95–115, 1946),
 NSFPAR ID:
 10372408
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 BoundaryLayer Meteorology
 Volume:
 185
 Issue:
 2
 ISSN:
 00068314
 Page Range / eLocation ID:
 p. 199228
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract V (t ,x ) to the Korteweg–de Vries equation on the real line, we prove global wellposedness for initial data . Our conditions on$$u(0,x) \in V(0,x) + H^{1}(\mathbb {R})$$ $u(0,x)\in V(0,x)+{H}^{1}\left(R\right)$V do include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles satisfy our hypotheses. In particular, we can treat localized perturbations of the muchstudied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ $V(0,x)\in {H}^{5}(R/Z)$https://doi.org/10.1088/13616544/ac37f5 ) we show that smooth steplike initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4 ) where . In that setting, it is known that$$V\equiv 0$$ $V\equiv 0$ is sharp in the class of$$H^{1}(\mathbb {R})$$ ${H}^{1}\left(R\right)$ spaces.$$H^s(\mathbb {R})$$ ${H}^{s}\left(R\right)$ 
Abstract The preALPACA (Alaskan Layered Pollution And Chemical Analysis) 2019 winter campaign took place in Fairbanks, Alaska, in November–December 2019. One objective of the campaign was to study the lifecycle of surfacebased temperature inversions and the associated surface energy budget changes. Several instruments, including a 4component radiometer and sonic anemometer were deployed in the open, snowcovered University of Alaska Fairbanks (UAF) Campus Agricultural Field. A local flow from a connecting valley occurs at this site. This flow is characterized by locally elevated wind speeds (greater than 3 m s
) under clearsky conditions and a northwesterly direction. It is notably different to the wind observed at the airport more than 3.5 km to the southwest. The surface energy budget at the UAF Field site exhibits two preferential modes. In the first mode, turbulent sensible heat and net longwave fluxes are close to 0 W m$$^{1}$$ ${}^{1}$ , linked to the presence of clouds and generally low winds. In the second, the net longwave flux is around − 50 W m$$^{2}$$ ${}^{2}$ and the turbulent sensible heat flux is around 15 W m$$^{2}$$ ${}^{2}$ , linked to clear skies and elevated wind speeds. The development of surfacebased temperature inversions at the field is hindered compared to the airport because the local flow sustains vertical mixing. In this second mode the residual of the surface energy budget is large, possibly due to horizontal temperature advection.$$^{2}$$ ${}^{2}$ 
Abstract The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm^{−3}) despite its low redshift of
z _{frb}= 0.241. This excess has been attributed to a large host contribution of DM_{host}≈ 900 pc cm^{−3}, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateM _{halo}> 10^{14}M _{⊙}galaxy clusters atz = 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr _{200}. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution of or ${\mathrm{D}\mathrm{M}}_{\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{t}}={430}_{220}^{+140}$ (observed frame), depending on whether we assume that the halo gas extends to ${280}_{170}^{+140}\phantom{\rule{0.25em}{0ex}}\mathrm{p}\mathrm{c}\phantom{\rule{0.25em}{0ex}}{\mathrm{c}\mathrm{m}}^{3}$r _{200}or 2 ×r _{200}. This significantly smaller DM_{host}—no longer the largest known value—is now consistent with Hα emission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be , suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe. $\tilde{F}G\approx 4.5\u201311{({\mathrm{pc}}^{2}\phantom{\rule{0.25em}{0ex}}\mathrm{km})}^{1/3}$ 
Abstract The oceanic bottom mixed layer (BML) is a well mixed, weakly stratified, turbulent boundary layer. Adjacent to the seabed, the BML is of intrinsic importance for studying ocean mixing, energy dissipation, particle cycling and sedimentwater interactions. While deepseabed mining of polymetallic nodules is anticipated to commence in the ClarionClipperton Zone (CCZ) of the northeastern tropical Pacific Ocean, knowledge gaps regarding the form of the BML and its potentially key influence on the dispersal of sediment plumes generated by deepseabed mining activities are yet to be addressed. Here, we report recent field observations from the German mining licence area in the CCZ that characterise the structure and variability of the BML locally. Quasiuniform profiles of potential temperature extending from the seafloor reveal the presence of a spatially and temporally variable BML with an average local thickness of approximately 250 m. Deep horizontal currents in the region have a mean speed of 3.5 cm s
and a maximum speed of 12 cm s$$^{1}$$ ${}^{1}$ at 18.63 ms above bottom over an 11 month record. The nearbottom currents initially have a net southeastward flow, followed by westward and southward flows with the development of complex, anticyclonic flow patterns. Theoretical predictions and historical data show broad consistency with mean BML thickness but cannot explain the observed heterogeneity of local BML thickness. We postulate that deep pressure anomalies induced by passing surface mesoscale eddies and abyssal thermal fronts could affect BML thickness, in addition to local topographic effects. A simplified transport model is then used to study the influence of the BML on the interplay between turbulent diffusion and sediment settling in the transport of deepseabed mining induced sediment plumes. Over a range of realistic parameter values, the effects of BML on plume evolution can vary significantly, highlighting that resolving the BML will be a crucial step for accurate numerical modelling of plume dispersal.$$^{1}$$ ${}^{1}$ 
Abstract Leptoquarks (
s) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyondSM (BSM) hypotheses. However, the limits are significantly weaker for$$\textrm{LQ}$$ $\text{LQ}$ models with family nonuniversal couplings containing enhanced couplings to thirdgeneration fermions. We present a new study on the production of a$$\textrm{LQ}$$ $\text{LQ}$ at the LHC, with preferential couplings to thirdgeneration fermions, considering protonproton collisions at$$\textrm{LQ}$$ $\text{LQ}$ and$$\sqrt{s} = 13 \, \textrm{TeV}$$ $\sqrt{s}=13\phantom{\rule{0ex}{0ex}}\text{TeV}$ . Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of$$\sqrt{s} = 13.6 \, \textrm{TeV}$$ $\sqrt{s}=13.6\phantom{\rule{0ex}{0ex}}\text{TeV}$ meson decay rates, specifically the$$\textrm{B}$$ $\text{B}$ ratios. Under a simplified model where the$$R_{D^{(*)}}$$ ${R}_{{D}^{(\ast )}}$ masses and couplings are free parameters, we focus on cases where the$$\textrm{LQ}$$ $\text{LQ}$ decays to a$$\textrm{LQ}$$ $\text{LQ}$ lepton and a$$\tau $$ $\tau $ quark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson,$$\textrm{b}$$ $\text{b}$ . The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the$$\textrm{Z}^{\prime }$$ ${\text{Z}}^{\prime}$ meson anomalies, for$$\textrm{B}$$ $\text{B}$ masses up to$$\textrm{LQ}$$ $\text{LQ}$ , for the high luminosity LHC scenario.$$5.00\, \textrm{TeV}$$ $5.00\phantom{\rule{0ex}{0ex}}\text{TeV}$