skip to main content

Title: WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris

The plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris. LAM1 and NsWOX9 directly recognize and bind to the same cis-elements in the NsCKX3 promoter to repress and activate its expression, respectively, thus controlling the levels of active cytokinins in vivo. Disruption of NsCKX3 in the lam1 background yielded a phenotype similar to the knockdown of NsWOX9 in lam1, while overexpressing NsCKX3 resulted in narrower and shorter lam1 leaf blades reminiscent of NsWOX9 overexpression in the lam1 mutant. Moreover, we established that LAM1 physically interacts with NsWOX9, and this interaction is required to regulate NsCKX3 transcription. Taken together, our results indicate that repressor and activator WOX members oppositely regulate a common downstream target to function in leaf blade outgrowth, offering a novel insight into the role of local cytokinins in balancing cell proliferation and differentiation during lateral organ development.

; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
The Plant Cell
Page Range or eLocation-ID:
p. 3737-3753
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Leaf laminar growth and adaxial–abaxial boundary formation are fundamental outcomes of plant development. Boundary and laminar growth coordinate the further patterning and growth of the leaf, directing the differentiation of cell types within the top and bottom domains and promoting initiation of lateral organs along their adaxial or abaxial axis. Leaf adaxial–abaxial polarity specification and laminar outgrowth are regulated by two transcription factors, REVOLUTA (REV) and KANADI (KAN). ABA INSENSITIVE TO GROWTH 1 (ABIG1) encodes a HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) class II transcription factor and is a direct target of the adaxial–abaxial regulators REV and KAN. To investigate the role of ABIG1 in leaf development and in the establishment of polarity, we examined the phenotypes of both gain-of-function and loss-of-function mutants. Through genetic interaction analysis with REV and KAN mutants, we determined that ABIG1 plays a role in leaf laminar growth as well as in adaxial–abaxial polarity establishment. Genetic and physical interaction assays showed that ABIG1 interacts with the transcriptional TOPLESS corepressor. This study provides new evidence that ABIG1, another HD-ZIP II, facilitates growth through the corepressor TOPLESS.

  2. Abstract Background

    Circadian (daily) timekeeping is essential to the survival of many organisms. An integral part of all circadian timekeeping systems is negative feedback between an activator and repressor. However, the role of this feedback varies widely between lower and higher organisms.


    Here, we study repression mechanisms in the cyanobacterial and eukaryotic clocks through mathematical modeling and systems analysis. We find a common mathematical model that describes the mechanism by which organisms generate rhythms; however, transcription’s role in this has diverged. In cyanobacteria, protein sequestration and phosphorylation generate and regulate rhythms while transcription regulation keeps proteins in proper stoichiometric balance. Based on recent experimental work, we propose a repressor phospholock mechanism that models the negative feedback through transcription in clocks of higher organisms. Interestingly, this model, when coupled with activator phosphorylation, allows for oscillations over a wide range of protein stoichiometries, thereby reconciling the negative feedback mechanism inNeurosporawith that in mammals and cyanobacteria.


    Taken together, these results paint a picture of how circadian timekeeping may have evolved.

  3. Abstract

    Leaves and flowers are produced by the shoot apical meristem (SAM) at a certain distance from its center, a process that requires the hormone auxin. The amount of auxin and the pattern of its distribution in the initiation zone determine the size and spatial arrangement of organ primordia. Auxin gradients in the SAM are formed by PIN-FORMED (PIN) auxin efflux carriers whose polar localization in the plasma membrane depends on the protein kinase PINOID (PID). Previous work determined that ERECTA (ER) family genes (ERfs) control initiation of leaves. ERfs are plasma membrane receptors that enable cell-to-cell communication by sensing extracellular small proteins from the EPIDERMAL PATTERNING FACTOR/EPF-LIKE (EPF/EPFL) family. Here, we investigated whether ERfs regulate initiation of organs by altering auxin distribution or signaling in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological data suggested that ERfs do not regulate organogenesis through PINs while transcriptomics data showed that ERfs do not alter primary transcriptional responses to auxin. Our results indicated that in the absence of ERf signaling the peripheral zone cells inefficiently initiate leaves in response to auxin signals and that increased accumulation of auxin in the er erecta-like1 (erl1) erl2 SAM can partially rescue organ initiation defects. We propose thatmore »both auxin and ERfs are essential for leaf initiation and that they have common downstream targets. Genetic data also indicated that the role of PID in initiation of cotyledons and leaves cannot be attributed solely to regulation of PIN polarity and PID is likely to have other functions in addition to regulation of auxin distribution.

    « less
  4. Abstract

    While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix–loop–helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes.more »While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.

    « less
  5. Maintaining sufficient water transport during flowering is essential for proper organ growth, fertilization, and yield. Water deficits that coincide with flowering result in leaf wilting, necrosis, tassel browning, and sterility, a stress condition known as “tassel blasting.” We identified a mutant, necrotic upper tips1 ( nut1 ), that mimics tassel blasting and drought stress and reveals the genetic mechanisms underlying these processes. The nut1 phenotype is evident only after the floral transition, and the mutants have difficulty moving water as shown by dye uptake and movement assays. These defects are correlated with reduced protoxylem vessel thickness that indirectly affects metaxylem cell wall integrity and function in the mutant. nut1 is caused by an Ac transposon insertion into the coding region of a unique NAC transcription factor within the VND clade of Arabidopsis . NUT1 localizes to the developing protoxylem of root, stem, and leaf sheath, but not metaxylem, and its expression is induced by flowering. NUT1 downstream target genes function in cell wall biosynthesis, apoptosis, and maintenance of xylem cell wall thickness and strength. These results show that maintaining protoxylem vessel integrity during periods of high water movement requires the expression of specialized, dynamically regulated transcription factors within the vasculature.