skip to main content

Title: Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment
Abstract Background

In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can unveil complementary information from multiple imaging modalities and further our understanding of the disease. One application is to discover disease subtypes using unsupervised clustering. However, existing clustering methods are often applied to input features directly, and could suffer from the curse of dimensionality with high-dimensional multimodal data. The purpose of our study is to identify multimodal imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a multiview learning framework based on Deep Generalized Canonical Correlation Analysis (DGCCA), to learn shared latent representation with low dimensions from 3 neuroimaging modalities.


DGCCA applies non-linear transformation to input views using neural networks and is able to learn correlated embeddings with low dimensions that capture more variance than its linear counterpart, generalized CCA (GCCA). We designed experiments to compare DGCCA embeddings with single modality features and GCCA embeddings by generating 2 subtypes from each feature set using unsupervised clustering. In our validation studies, we found that amyloid PET imaging has the most discriminative features compared with structural MRI and FDG PET which DGCCA learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive assessments, 6 brain volume measures, and conversion to AD patterns. In addition, DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing late MCI group did not identify.


Overall, DGCCA is able to learn effective low dimensional embeddings from multimodal data by learning non-linear projections. MCI subtypes generated from DGCCA embeddings are different from existing early and late MCI groups and show most similarity with those identified by amyloid PET features. In our validation studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, and are able to identify AD genetic markers. These findings indicate the promise of the imaging-driven subtypes and their power in revealing disease structures beyond early and late stage MCI.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Bioinformatics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values. 
    more » « less
  2. Abstract

    In the Alzheimer’s disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical management. Our goal was to develop generalizable multivariate models that integrate high-dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 3 years. Our main findings were i) we were able to build generalizable models with clinically relevant accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting progression; iii) our methodology allowed us to discover that expression ofCR1(complement receptor 1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive value. This work highlights the value of optimized machine learning approaches for analyzing multimodal patient information for making predictive assessments.

    more » « less
  3. Abstract Background

    Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic.


    This paper examines late‐onset dementia‐related cognitive impairment utilizing neuroimaging‐genetics biomarker associations.

    Materials and Methods

    The participants, ages 65–85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD‐associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample‐major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta‐GWAS study by Jansen and colleagues.


    We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models.


    In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM‐NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC.


    This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.

    more » « less
  4. Background: Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer’s disease (AD). Performing multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the performance of the diagnosis models. Objective: This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance and redundancy of regional biomarkers and improve the AD classification accuracy. Methods: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 722 participants with three modalities, including florbetapir-PET, flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture the redundancy and complementarity of the predictors and develop a feature ranking approach. This was followed by evaluating the capability of single-modal and multimodal biomarkers in predicting the cognitive stage. Results: Although amyloid-β deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded a higher early-stage classification F1-score (65.4%) compared to amyloid-β PET (63.3%) and MRI (63.2%). The SVC multimodal scenario with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. When age and risk factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)] framework helped to interpret the classification results for different biomarker categories. Conclusion: The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal datasets and enhance model performance. The AT(N) biomarker framework can help to explore the misclassified cases by revealing the relationship between neuropathological biomarkers and cognition. 
    more » « less
  5. null (Ed.)
    This study introduces a new multimodal deep regression method to predict cognitive test score in a 5-year longitudinal study on Alzheimer’s disease (AD). The proposed model takes advantage of multimodal data that includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from neuropsychological tests (Cog), all with the aim of achieving highly accurate predictions of future Mini-Mental State Examination (MMSE) test scores up to five years after baseline biomarker collection. A novel data augmentation technique is leveraged to increase the numbers of training samples without relying on synthetic data. With the proposed method, the best and most encompassing regressor is shown to achieve better than state-of-the-art correlations of 85.07%(SD=1.59) for 6 months in the future, 87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18 months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for 30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85) for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76) for 54 months, and 74.96% (SD=7.54) for 60 months. 
    more » « less