skip to main content


Title: Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure
Abstract

Epistasis is an evolutionary phenomenon whereby the fitness effect of a mutation depends on the genetic background in which it arises. A key source of epistasis in an RNA molecule is its secondary structure, which contains functionally important topological motifs held together by hydrogen bonds between Watson–Crick (WC) base pairs. Here we study epistasis in the secondary structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by examining properties of derived alleles arising from substitution mutations at ancestral WC base-paired and unpaired (UP) sites in 15 conserved topological motifs across the genome. We uncover fewer derived alleles and lower derived allele frequencies at WC than at UP sites, supporting the hypothesis that modifications to the secondary structure are often deleterious. At WC sites, we also find lower derived allele frequencies for mutations that abolish base pairing than for those that yield G·U “wobbles,” illustrating that weak base pairing can partially preserve the integrity of the secondary structure. Last, we show that WC sites under the strongest epistatic constraint reside in a three-stemmed pseudoknot motif that plays an essential role in programmed ribosomal frameshifting, whereas those under the weakest epistatic constraint are located in 3’ UTR motifs that regulate viral replication and pathogenicity. Our findings demonstrate the importance of epistasis in the evolution of the SARS-CoV-2 secondary structure, as well as highlight putative structural and functional targets of different forms of natural selection.

 
more » « less
NSF-PAR ID:
10372561
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Molecular Evolution
Volume:
90
Issue:
6
ISSN:
0022-2844
Page Range / eLocation ID:
p. 429-437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the earlier SARS-CoV-2 variants, BA.1 has many mutations, some of which are known to enable antibody escape. Many of these antibody-escape mutations individually decrease the spike receptor-binding domain (RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness and evolution of the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 arising from a chronic infection.

     
    more » « less
  2. Abstract

    Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host‐related differentiation for 10,241 single nucleotide polymorphisms inRhagoletis pomonellafruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegusspp.)‐infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430‐km transect, where the host races co‐occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion‐associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.

     
    more » « less
  3. Abstract Motivation

    Building reliable phylogenies from very large collections of sequences with a limited number of phylogenetically informative sites is challenging because sequencing errors and recurrent/backward mutations interfere with the phylogenetic signal, confounding true evolutionary relationships. Massive global efforts of sequencing genomes and reconstructing the phylogeny of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains exemplify these difficulties since there are only hundreds of phylogenetically informative sites but millions of genomes. For such datasets, we set out to develop a method for building the phylogenetic tree of genomic haplotypes consisting of positions harboring common variants to improve the signal-to-noise ratio for more accurate and fast phylogenetic inference of resolvable phylogenetic features.

    Results

    We present the TopHap approach that determines spatiotemporally common haplotypes of common variants and builds their phylogeny at a fraction of the computational time of traditional methods. We develop a bootstrap strategy that resamples genomes spatiotemporally to assess topological robustness. The application of TopHap to build a phylogeny of 68 057 SARS-CoV-2 genomes (68KG) from the first year of the pandemic produced an evolutionary tree of major SARS-CoV-2 haplotypes. This phylogeny is concordant with the mutation tree inferred using the co-occurrence pattern of mutations and recovers key phylogenetic relationships from more traditional analyses. We also evaluated alternative roots of the SARS-CoV-2 phylogeny and found that the earliest sampled genomes in 2019 likely evolved by four mutations of the most recent common ancestor of all SARS-CoV-2 genomes. An application of TopHap to more than 1 million SARS-CoV-2 genomes reconstructed the most comprehensive evolutionary relationships of major variants, which confirmed the 68KG phylogeny and provided evolutionary origins of major and recent variants of concern.

    Availability and implementation

    TopHap is available at https://github.com/SayakaMiura/TopHap.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. The s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a >99% correlation of a single nucleotide mutation at the 15th position (G15U) in Delta SARS-CoV-2. Based on1H NMR spectroscopy assignments comparing the imino proton resonance region of s2m and the s2m G15U at 19°C, we show that the U15–A29 base pair closes, resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we show that the s2m G15U mutation drastically impacts the binding of host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on immune responses.

     
    more » « less
  5. Due to the emergence of new variants of the SARS-CoV-2 coronavirus, the question of how the viral genomes evolved, leading to the formation of highly infectious strains, becomes particularly important. Three major emergent strains, Alpha, Beta and Delta, characterized by a significant number of missense mutations, provide a natural test field. We accumulated and aligned 4.7 million SARS-CoV-2 genomes from the GISAID database and carried out a comprehensive set of analyses. This collection covers the period until the end of October 2021, i.e., the beginnings of the Omicron variant. First, we explored combinatorial complexity of the genomic variants emerging and their timing, indicating very strong, albeit hidden, selection forces. Our analyses show that the mutations that define variants of concern did not arise gradually but rather co-evolved rapidly, leading to the emergence of the full variant strain. To explore in more detail the evolutionary forces at work, we developed time trajectories of mutations at all 29,903 sites of the SARS-CoV-2 genome, week by week, and stratified them into trends related to (i) point substitutions, (ii) deletions and (iii) non-sequenceable regions. We focused on classifying the genetic forces active at different ranges of the mutational spectrum. We observed the agreement of the lowest-frequency mutation spectrum with the Griffiths–Tavaré theory, under the Infinite Sites Model and neutrality. If we widen the frequency range, we observe the site frequency spectra much more consistently with the Tung–Durrett model assuming clone competition and selection. The coefficients of the fitting model indicate the possibility of selection acting to promote gradual growth slowdown, as observed in the history of the variants of concern. These results add up to a model of genomic evolution, which partly fits into the classical drift barrier ideas. Certain observations, such as mutation “bands” persistent over the epidemic history, suggest contribution of genetic forces different from mutation, drift and selection, including recombination or other genome transformations. In addition, we show that a “toy” mathematical model can qualitatively reproduce how new variants (clones) stem from rare advantageous driver mutations, and then acquire neutral or disadvantageous passenger mutations which gradually reduce their fitness so they can be then outcompeted by new variants due to other driver mutations. 
    more » « less