During 2018, 2019, and 2020, the UMBC CyberTraining initiative “Big Data + HPC + Atmospheric Sciences” created an online team-based training program for advanced graduate students and junior researchers that trained a total of 58 participants. The year 2020 included 6 undergraduate students. Based on this experience, the authors created the summer undergraduate research program Online Interdisciplinary Big Data Analytics in Science and Engineering that will conduct 8-week online team-based undergraduate research programs (bigdatareu.umbc.edu) in the summers 2021, 2022, and 2023. Given the context of many institutions potentially expanding their online instruction, we share our experiences how the successful lessons from CyberTraining transfer to a high-intensity full-time online summer undergraduate research program.
more »
« less
Big data promises and obstacles: Agricultural data ownership and privacy
Abstract The year 2022 marks the ten‐year anniversary of the White House's Big Data Research and Development Initiative. While this initiative, and the others it spawned, helped to advance the many facets of data intensive research and discovery, obstacles and challenges still exist. If left unaddressed these obstacles will persist and at a minimum limit the potential of what can be achieved by harnessing the many new ways to collect, analyze, and share data and the insights that can be drawn from them. The opportunities and challenges related to Big Data in agriculture touch on all aspects of the general research data lifecycle; from instruments used to gather data, to advanced digital platforms used to store, analyze, and share data, and the innovative insights from using advanced computational methods. The eight papers included in this special issue were chosen in part because they highlight both the challenges and the opportunities that come from all stages of the data lifecycle common across agricultural research and development. These papers grew out of several workshops made possible by the support of the Midwest Regional Big Data Hub, which is sponsored by the National Science Foundation.
more »
« less
- Award ID(s):
- 1636865
- PAR ID:
- 10372598
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Agronomy Journal
- Volume:
- 114
- Issue:
- 5
- ISSN:
- 0002-1962
- Page Range / eLocation ID:
- p. 2619-2623
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a new initiative to create a training program or graduate-level course (cybertraining.umbc.edu) in big data applied to atmospheric sciences as application area and using high-performance computing as indispensable tool. The training consists of instruction in all three areas of "Big Data + HPC + Atmospheric Sciences" supported by teaching assistants and followed by faculty-guided project research in a multidisciplinary team of participants from each area. Participating graduate students, post-docs, and junior faculty from around the nation will be exposed to multidisciplinary research and have the opportunity for significant career impact. The paper discusses the challenges, proposed solutions, practical issues of the initiative, and how to integrate high-quality developmental program evaluation into the improvement of the initiative from the start to aid in ongoing development of the program.more » « less
-
Since its emergence, the cloud manufacturing concept has been transforming the manufacturing and remanufacturing industry into a big data and service-oriented environment. The aggressive push toward data collection in cloud-based and cyber-physical systems provides both challenges and opportunities for predictive analytics. One of the key applications of predictive analytics in such domains is predictive quality management that aims to fully exploit the potentials provided by the enormous data collected via cloud-based systems. As a case study, a data set of hard disk drives’ Self-Monitoring, Analysis and Reporting Technology (SMART) attributes from a cloud-storage service provider has been analyzed to derive some insights about the challenges and opportunities of using product lifecycle data. An analysis of time-to-failure monitoring of hard disk drives in real-time has been carried out and the corresponding challenges have been discussed.more » « less
-
We are currently living in the era of big data. The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms, and cutting-edge cloud computing have also recently been developed. While new opportunities are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges also emerge for LULC mapping from using these geospatial big data. This article summarizes the review studies and research progress in remote sensing, machine learning, deep learning, and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges, and future directions of using geospatial big data for LULC mapping. More research needs to be performed for improved LULC mapping at large scales.more » « less
-
With the development of high-speed computers, networks, and huge storage, researchers can utilize a large volume and wide variety of materials data generated by experimental facilities and computations. The emergence of these big data and advanced analytical techniques has opened unprecedented opportunities for materials research. The discovery of many kinds of materials, such as energy-harvesting materials, structural materials, catalysts, optoelectronic materials, and magnetic materials, have been greatly accelerated through high-throughput screening. The utility of data-centric science for materials research is likely to grow significantly in the future. Unraveling the complexities inherent in big data could lead to novel design rules as well as new materials and functionalities.more » « less