skip to main content

Title: Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage

Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such asPopulus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Page Range / eLocation ID:
p. 4684-4700
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.

    more » « less
  2. Climate change and competition from invasive species remain two important challenges in restoration. We examined the hypothesis that non‐native tamarisk (Tamarixspp.) reestablishment after aboveground removal is affected by genetics‐based architecture of native Fremont cottonwood (Populus fremontii) used in restoration. As cottonwood architecture (height, canopy width, number of stems, and trunk diameter) is, in part, determined by genetics, we predicted that trees from different provenances would exhibit different architecture, and mean annual maximum temperature transfer distance from the provenances would interact with the architecture to affect tamarisk. In a common garden in Chevelon, AZ, U.S.A. (elevation 1,496 m), with cottonwoods from provenances spanning its elevation distribution, we measured the performance of both cottonwoods and tamarisk. Several key findings emerged. On average, cottonwoods from higher elevations were (1) two times taller and wider, covered approximately 3.5 times more basal area, and were less shrubby in appearance, by exhibiting four times fewer number of stems than cottonwoods from lower elevations; (2) had 50% fewer tamarisk growing underneath, which were two times shorter and covered 6.5 times less basal area than tamarisk growing underneath cottonwoods of smaller stature; and (3) the number of cottonwood stems did not affect tamarisk growth, possibly because the negative relationship between cottonwood stems and basal area. In combination, these findings argue that cottonwood architecture is affected by local conditions that interact with genetics‐based architecture. These interactions can negatively affect the growth of reinvading tamarisk and enhance restoration success. Our study emphasizes the importance of incorporating genetic and environmental interactions of plants used in restoration.

    more » « less
  3. Abstract

    Species faced with rapidly shifting environments must be able to move, adapt, or acclimate in order to survive. One mechanism to meet this challenge is phenotypic plasticity: altering phenotype in response to environmental change. Here, we investigated the magnitude, direction, and consequences of changes in two key phenology traits (fall bud set and spring bud flush) in a widespread riparian tree species,Populus fremontii. Using replicated genotypes from 16 populations from throughout the species’ thermal range, and reciprocal common gardens at hot, warm, and cool sites, we identified four major findings: (a) There are significant genetic (G), environmental (E), and GxE components of variation for both traits across three common gardens; (b) The magnitude of phenotypic plasticity is correlated with provenance climate, where trees from hotter, southern populations exhibited up to four times greater plasticity compared to the northern, frost‐adapted populations; (c) Phenological mismatches are correlated with higher mortality as the transfer distances between provenance and garden increase; and (d) The relationship between plasticity and survival depends not only on the magnitude and direction of environmental transfer, but also on the type of environmental stress (i.e., heat or freezing), and how particular traits have evolved in response to that stress. Trees transferred to warmer climates generally showed small to moderate shifts in an adaptive direction, a hopeful result for climate change. Trees experiencing cooler climates exhibited large, non‐adaptive changes, suggesting smaller transfer distances for assisted migration. This study is especially important as it deconstructs trait responses to environmental cues that are rapidly changing (e.g., temperature and spring onset) and those that are fixed (photoperiod), and that vary across the species’ range. Understanding the magnitude and adaptive nature of phenotypic plasticity of multiple traits responding to multiple environmental cues is key to guiding restoration management decisions as climate continues to change.

    more » « less
  4. Black cottonwood (Populus trichocarpa) is a species of economic interest and an outstanding study model. The aspen borer (Saperda calcarata) causes irreversible damage to poplars and other riparian species in North America. The insect can produce multiple effects ranging from the presence of some galleries in the stem to tree death. Despite the ecological and commercial importance of this tree–insect interaction, the genetic mechanisms underlying the response of P. trichocarpa to S. calcarata are scarcely understood. In this study, a common garden trial of P. trichocarpa provenances, established in Davis, California, was assessed at the second year of growth, regarding the infestation of S. calcarata from a natural outbreak. A genome-wide association study (GWAS) was conducted using 629k of exonic SNPs to assess the relationship between genomic variation and insect attack. Tree architecture, in terms of stem number per plant, and the wood metabolome were also included. Insect attack was independent of the number of stems per tree. The performed GWAS identified three significantly associated SNP markers (q-value < 0.2) belonging to the same number of gene models, encoding proteins involved in signal transduction mechanisms and secondary metabolite production, including that of R-mandelonitrile lyase, Chromodomain-helicase-DNA-binding family protein, and Leucine-rich repeat protein. These results are aligned with the current knowledge of defensive pathways in plants and trees, helping to expand the understanding of the defensive response mechanisms of black cottonwood against wood borer insects. 
    more » « less
  5. Summary

    The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high‐competition environments. Plant genotypes adjust their functional trait expression under high levels of competition, which may help explain intra‐specific variation in competitive response. However, the relationships between traits and competitive response are not well understood, especially in trees. In this study, we investigated among‐genotype associations between tree trait plasticity and competitive response.

    We manipulated competition intensity in experimental stands of trembling aspen (Populus tremuloides) to address the covariance between competition‐induced changes in functional trait expression and aspects of competitive ability at the genotype level.

    Genotypic variation in the direction and magnitude of functional trait responses, especially those of crown foliar mass, phytochemistry, and leaf physiology, was associated with genotypic variation in competitive response. Traits exhibited distinct plastic responses to competition, with varying degrees of genotypic variation and covariance with other trait responses.

    The combination of genotypic diversity and covariance among functional traits led to tree responses to competition that were coordinated among traits yet variable among genotypes. Such relationships between tree traits and competitive success have the potential to shape stand‐level trait distributions over space and time.

    more » « less