skip to main content


Title: Chemically exfoliated nanosheets of β-Bi 2 O 3
Abstract

Exploring two dimensional (2D) materials is important for further developing the field of quantum materials. However, progress in 2D material development is limited by difficulties with their production. Specifically, freestanding 2D materials with bulk non-layered structures remain particularly challenging to prepare. Traditionally, chemical or mechanical exfoliation is employed for obtaining freestanding 2D materials, but these methods typically require layered starting materials. Here we put forth a method for obtaining thin layers ofβ-Bi2O3, which has a three-dimensional covalent structure, by using chemical exfoliation. In this research, Na3Ni2BiO6was exfoliated with acid and water to obtainβ-Bi2O3nanosheets less than 10 nm in height and over 1 µm in lateral size. Our results open the possibility for further exploringβ-Bi2O3nanosheets to determine whether their properties change from the bulk to the nanoscale. Furthermore, this research may facilitate further progress in obtaining nanosheets of non-layered bulk materials using chemical exfoliation.

 
more » « less
NSF-PAR ID:
10372710
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Materials
Volume:
5
Issue:
4
ISSN:
2515-7639
Page Range / eLocation ID:
Article No. 044004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D material for next-generation large-area flexible electronic and optoelectronic devices. 
    more » « less
  2. Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B 4 C), the third hardest known material, into ultrathin nanosheets. B 4 C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B 4 C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B 4 C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B 4 C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at the surface. Atomic force microscopy (AFM) shows that the nanosheets produced by LPE are as thin as 5 nm, with an average thickness of 31.4 nm and average area of 16 000 nm 2 . Raman spectroscopy shows that many of the nanosheets exhibit additional carbon-rich peaks that change with laser irradiation, which are attributed to atomic rearrangements and amorphization at the nanosheet surfaces, consistent with the diverse cleavage planes. High-resolution transmission electron microscopy (HRTEM) demonstrates that many different cleavage planes exist among the exfoliated nanosheets, in agreement with DFT simulations. This work elucidates the exfoliation mechanism of 2D B 4 C and suggests that LPE can be applied to generate nanosheets from a variety of non-layered and non-vdW materials. 
    more » « less
  3. Abstract

    Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy—a tendency of spins to align in a certain crystallographic direction known as easy‐axis. In layered materials, two limits of easy‐axis are in‐plane (XY) and out‐of‐plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin‐orbitronic functions. Here, a unique experiment is designed to control the easy‐axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3−xBrxcrystals between CrCl3withXYand CrBr3with Ising anisotropy. The easy‐axis is controlled between the two limits by varying spin–orbit coupling with the Br content in CrCl3−xBrx. The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly withx. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.

     
    more » « less
  4. Abstract

    Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSeNSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface.

     
    more » « less
  5. Abstract

    Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (Ec) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofEcunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications.

     
    more » « less