Exploring two dimensional (2D) materials is important for further developing the field of quantum materials. However, progress in 2D material development is limited by difficulties with their production. Specifically, freestanding 2D materials with bulk non-layered structures remain particularly challenging to prepare. Traditionally, chemical or mechanical exfoliation is employed for obtaining freestanding 2D materials, but these methods typically require layered starting materials. Here we put forth a method for obtaining thin layers of
- Publication Date:
- NSF-PAR ID:
- 10372710
- Journal Name:
- Journal of Physics: Materials
- Volume:
- 5
- Issue:
- 4
- Page Range or eLocation-ID:
- Article No. 044004
- ISSN:
- 2515-7639
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D materialmore »
-
Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B 4 C), the third hardest known material, into ultrathin nanosheets. B 4 C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B 4 C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B 4 C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B 4 C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at themore »
-
Abstract Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior andmore »
-
Abstract Cannizzarite is a naturally occurring mineral formed by van der Waals (vdW) stacking of alternating layers of PbS-like and Bi2S3-like two-dimensional (2D) materials. Although the PbS-type and Bi2S3-type 2D material layers are structurally isotropic individually, the forced commensuration between these two types of layers while forming the heterostructure of cannizzarite induces strong structural anisotropy. Here we demonstrate the mechanical exfoliation of natural cannizzarite mineral to obtain thin vdW heterostructures of PbS-type and Bi2S3-type atomic layers. The structural anisotropy induced anisotropic optical properties of thin cannizzarite flakes are explored through angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our study establishes cannizzarite as a new natural vdW heterostructure-based 2D material with highly anisotropic optical properties for realizing polarization-sensitive linear and nonlinear photonic devices for future on-chip optical computing and optical information processing.
-
Abstract Lengenbachite is a naturally occurring layered mineral formed with alternating stacks of two constituent PbS-like and M2S3-like two-dimensional (2D) material layers due to the phase segregation process during the formation. Here, we demonstrate to achieve van der Waals (vdW) heterostructures of lengenbachite down to a few layer-pair thickness by mechanical exfoliation of bulk lengenbachite mineral. The incommensurability between the constituent isotropic 2D material layers makes the formed vdW heterostructure exhibit strong in-plane structural anisotropy, which leads to highly anisotropic optical responses in lengenbachite thin flakes, including anisotropic Raman scattering, linear dichroism, and anisotropic third-harmonic generation. Moreover, we exploit the nonlinear optical anisotropy for polarization-dependent intensity modulation of the converted third-harmonic optical vortices. Our study establishes lengenbachite as a new natural vdW heterostructure-based 2D material with unique optical properties for realizing anisotropic optical devices for photonic integrated circuits and optical information processing.