skip to main content

Title: Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type Ic Supernova 2014ad
Abstract

Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae and none to date for broad-lined Type Ic supernovae (SNe Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Feii5169 Å velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra usingtardis, a 1D Monte Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV, likely due to simplifying assumptions. We find that high densities at high velocities are needed to reproduce the spectra, with ∼3Mof material atv> 22,000 km s−1, assuming spherical symmetry. Our nebular line fits suggest a steep density profile more » at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light-curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10372750
Journal Name:
The Astrophysical Journal
Volume:
937
Issue:
1
Page Range or eLocation-ID:
Article No. 40
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimatemore »a mass-loss rate of $\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $\rm {\, km\, s^{-1}}$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙.« less
  2. ABSTRACT After correcting for their light-curve shape and colour, Type Ia supernovae (SNe Ia) are precise cosmological distance indicators. However, there remains a non-zero intrinsic scatter in the differences between measured distance and that inferred from a cosmological model (i.e. Hubble residuals or HRs), indicating that SN Ia distances can potentially be further improved. We use the open-source relational data base kaepora to generate composite spectra with desired average properties of phase, light-curve shape, and HR. At many phases, the composite spectra from two subsamples with positive and negative average HRs are significantly different. In particular, in all spectra from 9 d before to 15 d after peak brightness, we find that SNe with negative HRs have, on average, higher ejecta velocities (as seen in nearly every optical spectral feature) than SNe with positive HRs. At +4 d relative to B-band maximum, using a sample of 62 SNe Ia, we measure a 0.091 ± 0.035 mag (2.7σ) HR step between SNe with Si ii λ6355 line velocities ($v_{Si\, rm{\small II}}$) higher/lower than −11 000 km s−1 (the median velocity). After light-curve shape and colour correction, SNe with higher velocities tend to have underestimated distance moduli relative to a cosmological model. The intrinsic scatter in our sample reduces from 0.094 to 0.082 mag after making thismore »correction. Using the Si ii λ6355 velocity evolution of 115 SNe Ia, we estimate that a velocity difference >500 km s−1 exists at each epoch between the positive-HR and negative-HR samples with 99.4 per cent confidence. Finally at epochs later than +37 d, we observe that negative-HR composite spectra tend to have weaker spectral features in comparison to positive-HR composite spectra.« less
  3. ABSTRACT

    We present BVRI and unfiltered (Clear) light curves of 70 stripped-envelope supernovae (SESNe), observed between 2003 and 2020, from the Lick Observatory Supernova Search follow-up program. Our SESN sample consists of 19 spectroscopically normal SNe Ib, 2 peculiar SNe Ib, six SNe Ibn, 14 normal SNe Ic, 1 peculiar SN Ic, 10 SNe Ic-BL, 15 SNe IIb, 1 ambiguous SN IIb/Ib/c, and 2 superluminous SNe. Our follow-up photometry has (on a per-SN basis) a mean coverage of 81 photometric points (median of 58 points) and a mean cadence of 3.6 d (median of 1.2 d). From our full sample, a subset of 38 SNe have pre-maximum coverage in at least one passband, allowing for the peak brightness of each SN in this subset to be quantitatively determined. We describe our data collection and processing techniques, with emphasis toward our automated photometry pipeline, from which we derive publicly available data products to enable and encourage further study by the community. Using these data products, we derive host-galaxy extinction values through the empirical colour evolution relationship and, for the first time, produce accurate rise-time measurements for a large sample of SESNe in both optical and infrared passbands. By modelling multiband light curves, we find that SNe Ic tend to have lower ejectamore »masses and lower ejecta velocities than SNe Ib and IIb, but higher 56Ni masses.

    « less
  4. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-strippedmore »star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

    « less
  5. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity,more »strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

    « less