The shape of the heliosphere is currently under active debate. Energetic neutral atoms (ENAs) offer the best method for investigating the global structure of the heliosphere. To date, the Interstellar Boundary Explorer (IBEX) and the Ion and Neutral Camera (INCA) that was on board Cassini provide the only global ENA observations of the heliosphere. While extensive modeling has been done at IBEX-Hi energies (0.52–6 keV), no global ENA modeling has been conducted for INCA energies (5.2–55 keV). Here, we use an ENA model of the heliosphere based on hybrid results that capture the heating and acceleration of pickup ions (PUIs) at the termination shock to compare modeled global ENA results with IBEX-Hi and INCA observations using both a long- and short-tail model of the heliosphere. We find that the modeled ENA results for the two heliotail configurations produce similar results from the IBEX-Hi through the INCA energies. We conclude from our modeled ENAs, which only include PUI acceleration at the termination shock, that ENA observations in currently available energy ranges are insufficient for probing the shape and length of the heliotail. However, as a prediction for the future IMAP-Ultra mission (3–300 keV) we present modeled ENA maps at 80more »
Interstellar neutral atoms propagating into the heliosphere experience charge exchange with the supersonic solar wind (SW) plasma, generating ions that are picked up by the SW. These pickup ions (PUIs) constitute ∼25% of the proton number density by the time they reach the heliospheric termination shock (HTS). Preferential acceleration of PUIs at the HTS leads to a suprathermal, kappa-like PUI distribution in the heliosheath, which may be further heated in the heliosheath by traveling shocks or pressure waves. In this study, we utilize a dynamic, 3D magnetohydrodynamic model of the heliosphere to show that dynamic heating of PUIs at the HTS and in the inner heliosheath (IHS), as well as a background source of energetic neutral atoms (ENAs) from outside the heliopause, can explain the heliospheric ENA signal observed by the Interstellar Boundary Explorer (IBEX) in the Voyager 2 direction. We show that the PUI heating process at the HTS is characterized by a polytropic index larger than 5/3, likely ranging between
- Publication Date:
- NSF-PAR ID:
- 10372773
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 937
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. L38
- ISSN:
- 2041-8205
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIsmore »
-
Abstract Interstellar neutrals (ISNs), pick-up ions (PUIs), and energetic neutral atoms (ENAs) are fundamental constituents of the heliosphere and its interaction with the neighboring interstellar medium. Here, we focus on selected aspects of present-day theory and modeling of these particles. In the last decades, progress in the understanding of the role of PUIs and ENAs for the global heliosphere and its interaction with very local interstellar medium is impressive and still growing. The increasing number of measurements allows for verification and continuing development of the theories and model attempts. We present an overview of various model descriptions of the heliosphere and the processes throughout it including the kinetic, fluid, and hybrid solutions. We also discuss topics in which interplay between theory, models, and interpretation of measurements reveals the complexity of the heliosphere and its understanding. They include model-based interpretation of the ISN, PUI, and ENA measurements conducted from the Earth’s vicinity. In addition, we describe selected processes beyond the Earth’s orbit up to the heliosphere boundary regions, where PUIs significantly contribute to the complex system of the global heliosphere and its interaction with the VLISM.
-
Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.
-
Bulk Properties of Pickup Ions Derived from the Ulysses Solar Wind Ion Composition Spectrometer DataAbstract Nonthermal, pickup ions (PUIs) represent an energetic component of the solar wind (SW). While a number of theoretical models have been proposed to describe the PUI flow, of major importance are in situ measurements providing us with the vital source of model validation. The Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Ulysses spacecraft was specifically designed for this purpose. Zhang et al. proposed a new, accurate method for the derivation of ion velocity distribution function in the SW frame on the basis of count rates collected by SWICS. We calculate the moments of these distribution functions for protons (H + ) and He + ions along the Ulysses trajectory for a period of 2 months including the Halloween 2003 solar storm. This gives us the time distributions of PUI density and temperature. We compare these with the results obtained earlier for the same interval of time, in which the ion spectra are converted to the SW frame using the narrow-beam approximation. Substantial differences are identified, which are of importance for the interpretation of PUI distributions in the 3D, time-dependent heliosphere. We also choose one of the shocks crossed by Ulysses during this time interval and analyzemore »