skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The neurogenetics of sexually dimorphic behaviors from a postdevelopmental perspective
Abstract Most sexually reproducing animal species are characterized by two morphologically and behaviorally distinct sexes. The genetic, molecular and cellular processes that produce sexual dimorphisms are phylogenetically diverse, though in most cases they are thought to occur early in development. In some species, however, sexual dimorphisms are manifested after development is complete, suggesting the intriguing hypothesis that sex, more generally, might be considered a continuous trait that is influenced by both developmental and postdevelopmental processes. Here, we explore how biological sex is defined at the genetic, neuronal and behavioral levels, its effects on neuronal development and function, and how it might lead to sexually dimorphic behavioral traits in health and disease. We also propose a unifying framework for understanding neuronal and behavioral sexual dimorphisms in the context of both developmental and postdevelopmental, physiological timescales. Together, these two temporally separate processes might drive sex‐specific neuronal functions in sexually mature adults, particularly as it pertains to behavior in health and disease.  more » « less
Award ID(s):
1754264 1707221
PAR ID:
10372793
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Genes, Brain and Behavior
Volume:
19
Issue:
2
ISSN:
1601-1848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. True, John (Ed.)
    Abstract Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics. 
    more » « less
  2. Lott, S (Ed.)
    Abstract In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism. 
    more » « less
  3. Abstract Sexual size variation in adult holometabolous insects may arise from selective pressures impacting ontogenetic stages associated with diverse habitats and resource use. In addition, scaling relations of these sexually dimorphic traits play an important role in morphological diversification. In mosquitoes, given the sexual differences in feeding strategies, investigations of the ontogeny of sexually dimorphic traits are of particular interest to understanding their reproductive biology and implementing early sex‐separating technologies for vector control. However, our current knowledge of the morphological scaling of body parts over development across sexes is centered around a few well‐known species of anthropophilic mosquitoes. In general, there is a noticeable gap in our understanding of the developmental biology of mosquitoes with limited medical consequences. One such mosquito isUranotaenia lowii(Diptera: Culicidae), a species of growing interest due to its unique host use of feeding exclusively on frogs by eavesdropping on their mating calls. This study takes a step forward toward filling this gap by investigating sexual size dimorphism during the ontogeny ofUr. lowii. We examined larval and pupal stages to focus on traits that allow sex identification to evaluate various sex‐sorting techniques that provide a foundation for experimental manipulation. We found that sex identification inUr. lowiiis possible during both larval and pupal stages. In the fourth larval instar, thorax length, abdomen length, and total body length differ significantly between the sexes, showing allometric scaling. In the pupal stage, the allometry of the head and thorax to body size remains consistent, as these parts fuse into the cephalothorax. Successful sorting based on cephalothorax length enables highly accurate pupal sex identification. This research sheds light on the biology ofUr. lowii,an understudied mosquito species, and lays the foundation for future studies on the developmental and reproductive biology of frog‐biting mosquitoes. 
    more » « less
  4. ABSTRACT Sex‐specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex‐specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetleDigitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targetingtransformer (tra)caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and thattraRNAiis sufficient to induce splicing of the normally male‐specific isoform ofdoublesexin chromosomal females, while leaving males unaffected. Further,intersexRNAiwas found to phenocopy previously described RNAi phenotypes ofdoublesexin female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies inDrosophila melanogaster. In contrast, efforts to targettransformer2via RNAi resulted in high juvenile mortality but did not appear to affectdoublesexsplicing, whereas RNAi targetingSex‐lethaland two putative orthologs ofhermaphroditeyielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex‐specific trait expression found in nature. 
    more » « less
  5. Abstract Sexual dimorphism in prevalence, severity and genetic susceptibility exists for most common diseases. However, most genetic and clinical outcome studies are designed in sex-combined framework considering sex as a covariate. Few sex-specific studies have analyzed males and females separately, which failed to identify gene-by-sex interaction. Here, we propose a novel unified biologically interpretable deep learning-based framework (named SPIN) for sexual dimorphism analysis. We demonstrate that SPIN significantly improved the C-index up to 23.6% in TCGA cancer datasets, and it was further validated using asthma datasets. In addition, SPIN identifies sex-specific and -shared risk loci that are often missed in previous sex-combined/-separate analysis. We also show that SPIN is interpretable for explaining how biological pathways contribute to sexual dimorphism and improve risk prediction in an individual level, which can result in the development of precision medicine tailored to a specific individual’s characteristics. 
    more » « less