skip to main content

Title: A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies
Abstract

Southern Ocean (SO) diatoms play an important role in global carbon flux, and their influence on carbon export is directly linked to interactions with epiphytic bacteria. Bacterial symbionts that increase diatom growth promote atmospheric carbon uptake, while bacterial degraders divert diatom biomass into the microbial loop where it can then be released as carbon dioxide through respiration. To further explore SO diatom-bacterial associations, a natural model system is needed that is representative of these diverse and important interactions. Here, we use concurrent cultivation to isolate a species of the ecologically-important SO diatom,Pseudo-nitzschia subcurvata, and its co-occurring bacteria. Although vitamin-depleted, axenicPseudo-nitzschiagrew poorly in culture, addition of a co-isolated Roseobacter promoted diatom growth, while addition of a co-isolated Flavobacterium negatively impacted diatom growth. Microscopy revealed both bacterial isolates are physically associated with diatom cells and genome sequencing identified important predicted functions including vitamin synthesis, motility, cell attachment mechanisms, and diverse antimicrobial weapons that could be used for interbacterial competition. These findings revealed the natural coexistence of competing symbiotic strategies of diatom-associated bacteria in the SO, and the utility of this tripartite system, composed of a diatom and two bacterial strains, as a co-culture model to probe ecological-relevant interactions between diatoms and more » the bacteria that compete for access to the phycosphere.

« less
Authors:
; ; ; ;
Publication Date:
NSF-PAR ID:
10372795
Journal Name:
ISME Communications
Volume:
2
Issue:
1
ISSN:
2730-6151
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Microalgal cultures are often maintained in xenic conditions, i.e., with associated bacteria, and many studies indicate that these communities both are complex and have significant impacts on the physiology of the target photoautotroph. Here, we investigated the structure and stability of microbiomes associated with a diverse sampling of diatoms during long-term maintenance in serial batch culture. We found that, counter to our initial expectation, evenness diversity increased with time since cultivation, driven by a decrease in dominance by the most abundant taxa in each culture. We also found that the site from which and time at which a culture was initially collected had a stronger impact on microbiome structure than the diatom species; however, some bacterial taxa were commonly present in most cultures despite having widely geographically separated collection sites. Our results support the conclusion that stochastic initial conditions (i.e., the local microbial community at the collection site) are important for the long-term structure of these microbiomes, but deterministic forces such as negative frequency dependence and natural selection exerted by the diatom are also at work. IMPORTANCE Natural microbial communities are extremely complex, with many more species coexisting in the same place than there are different resources to supportmore »them. Understanding the forces that allow this high level of diversity has been a central focus of ecological and evolutionary theory for many decades. Here, we used stock cultures of diatoms, which were maintained for years in continuous growth alongside populations of bacteria, as proxies for natural communities. We show that the bacterial communities remained relatively stable for years, and there is evidence that ecological forces worked to stabilize coexistence instead of favoring competition and exclusion. We also show evidence that, despite some important regional differences in bacterial communities, there was a globally present core microbiome potentially selected for in these diatom cultures. Understanding interactions between bacteria and diatoms is important both for basic ecological science and for practical science, such as industrial biofuel production.« less
  2. The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia . We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add tomore »the growing body of evidence for Pseudo-nitzschia ’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.« less
  3. Abstract

    The aggregation of phytoplankton leads to the settling of particulate organic carbon in the form of marine snow, making it an important process in marine biogeochemical cycles. Diatoms >20 µm in size are considered to contribute appreciably to sinking particle fluxes due to aggregation and the production of transparent exopolymeric particles (TEP), the matrix for marine snow aggregates; however, it is not known whether nano-sized (2–20 µm) diatoms are able to aggregate and produce TEP. Here, we tested the aggregation and production of TEP by the nano-diatomMinutocellus polymorphusand investigated if interactions with bacteria influence aggregation by comparing axenicM. polymorphuscultures with co-cultures of the diatom with bacterial taxa known to colonize marine snow particles. We found thatM. polymorphusform sinking aggregates and produce TEP comparably to other phytoplankton groups and that aggregation and TEP production were influenced depending on the species of bacteria added. Aggregation was enhanced in the presence ofMarinobacter adhaerensHP15, but not in the presence ofPseudoalteromonas carrageenovoraorVibrio thalassae. Cell aggregation mediated by interactions with specific bacterial species are possible mechanisms behind the export of nano-sized diatoms, such asM. polymorphus, especially in oligotrophic open ocean regions where small phytoplankton dominate.

  4. The importance of zinc (Zn) as a nutrient and its ability to be substituted for by cobalt (Co) have been characterized in model marine diatoms. However, the extent to which this substitution capability is distributed among diatom taxa is unknown. Zn/Co metabolic substitution was assayed in four diatom species as measured by the effect of free ion concentrations of Zn2+ and Co2+ on specific growth rate. Analysis of growth responses found substitution of these metals can occur within the northwest Atlantic isolate Thalassiosira pseudonana CCMP1335, the northeast Atlantic isolate Phaeodactylum tricornutum CCMP632, and within the northeast Pacific isolates Pseudo-nitzschia delicatissima UNC1205 and Thalassiosira sp. UNC1203. Metabolic substitution of Co in place of Zn in the Atlantic diatoms supports their growth in media lacking added Zn, but at the cost of reduced growth rates. In contrast, highly efficient Zn/Co substitution that supported growth even in media lacking added Zn was observed in the northeast Pacific diatoms. We also present new data from the northeast Pacific Line P transect that revealed dissolved Co and Zn ratios (dCo : dZn) as high as 3.52 : 1 at surface (0–100 m) depths. We posit that the enhanced ability of the NE Pacific diatoms tomore »grow using Co is an adaptation to these high surface dCo : dZn ratios. Particulate metal data and single-cell metal quotas also suggest a high Zn demand in diatoms that may be partially compensated for by Co.« less
  5. Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms,Pseudo-nitzschiawere favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile,ChaetocerosandThalassiosiragene expression aligned with vacuolar storage mechanisms.Pseudo-nitzschiaalso showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.