skip to main content


Title: Analytical models for phonon mean free path in polycrystalline nanostructures based on mean square displacement

In this study, a numerical simulation method and analytical models for predicting the boundary scattering mean free path (MFP) of phonons in polycrystalline nanostructures are developed. The grain morphologies are assumed to be approximately equiaxed, i.e., forbidding needle-like or pancake-like morphologies. Adapting a technique from rarefied gas dynamics, the method evaluates the MFP from the mean square displacements of phonons that experience random motion and interface collisions in nanostructures. We confirm that the MFP in simple cubic polycrystalline nanostructures obtained by the simulations agrees with that reported in a previous study; this result supports the validity of the method. Two analytical models for high and low interfacial transmission probabilities at the crystal interfaces are also derived by considering the mean square displacements. We find that the grain-boundary intercept length distribution of polycrystalline structures is an essential parameter for determining this boundary scattering MFP. These analytical models reproduce the MFPs in simple cubic and Voronoi diagram polycrystalline nanostructures calculated by the numerical simulations. This result indicates that the boundary scattering MFP of phonons in polycrystalline nanostructures can be obtained once the intercept length distribution is evaluated, without any additional numerical simulations.

 
more » « less
PAR ID:
10372800
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
13
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.

     
    more » « less
  2. Nanocrystalline silicon can have unique thermal transport and mechanical properties governed by its constituent grain microstructure. Here, we use phonon ray-tracing and molecular dynamics simulations to demonstrate the largely tunable thermomechanical behaviors with varying grain sizes (a0) and aspect ratios (ξ). Our work shows that, by selectively increasing the grain size along the heat transfer direction while keeping the grain area constant, the in-plane lattice thermal conductivity (kx) increases more significantly than the cross-plane lattice thermal conductivity (ky) due to anisotropic phonon–grain boundary scattering. While kx generally increases with increasing ξ, a critical value exists for ξ at which kx reaches its maximum. Beyond this transition point, further increases in ξ result in a decrease in kx due to substantial scattering of low-frequency phonons with anisotropic grain boundaries. Moreover, we observe reductions in the elastic and shear modulus with decreasing grain size, and this lattice softening leads to significant reductions in phonon group velocity and thermal conductivity. By considering both thermal and mechanical size effects, we identify two distinct regimes of thermal transport, in which anisotropic phonon–grain boundary scattering becomes more appreciable at low temperatures and lattice softening becomes more pronounced at high temperatures. Through phonon spectral analysis, we attribute the significant thermal conductivity anisotropy in nanograined silicon to grain boundary scattering of low-frequency phonons and the softening-driven thermal conductivity reduction to Umklapp scattering of high-frequency phonons. These findings offer insights into the manipulation of thermomechanical properties of nanocrystalline silicon via microstructure engineering, carrying profound implications for the development of future nanomaterials.

     
    more » « less
  3. ABSTRACT

    Recent measurements of the ionizing photon mean free path (MFP) based on composite quasar spectra may point to reionization ending at z < 6. These measurements are challenging because they rely on assumptions about the proximity zones of the quasars. For example, some quasars might have been close to neutral patches where reionization was still ongoing (‘neutral islands’), and it is unclear how they would affect the measurements. We address this question with mock MFP measurements from radiative transfer simulations. We find that, even in the presence of neutral islands, our mock MFP measurements agree to within $30~{{\ \rm per\ cent}}$ with the true spatially averaged MFP in our simulations, which includes opacity from both the ionized medium and the islands. The inferred MFP is sensitive at the $\lt ~50~{{\ \rm per\ cent}}$ level to assumptions about quasar environments and lifetimes for realistic models. We demonstrate that future analyses with improved data may require explicitly modelling the effects of neutral islands on the composite spectra, and we outline a method for doing this. Lastly, we quantify the effects of neutral islands on Lyman-series transmission, which has been modelled with optically thin simulations in previous MFP analyses. Neutral islands can suppress transmission at λrest < 912 Å significantly, up to a factor of 2 for zqso = 6 in a plausible reionization scenario, owing to absorption by many closely spaced lines as quasar light redshifts into resonance. However, the suppression is almost entirely degenerate with the spectrum normalization and thus does not significantly bias the inferred MFP.

     
    more » « less
  4. Ru(0001) and Co(0001) films with thickness d ranging from 5 to 300 nm are sputter deposited onto Al2O3(0001) substrates in order to quantify and compare the resistivity size effect. Both metals form epitaxial single crystal layers with their basal planes parallel to the substrate surface and exhibit a root-mean-square roughness < 0.4 nm for Ru and < 0.9 nm for Co. Transport measurements on these layers have negligible resistance contributions from roughness and grain boundary scattering which allows direct quantification of electron surface scattering. The measured resistivity ρ vs d is well described by the classical Fuchs-Sondheimer model, indicating a mean free path for transport within the basal plane of λ = 6.7 ± 0.3 nm for Ru and λ = 19.5 ± 1.0 nm for Co. Bulk Ru is 36% more resistive than Co; in contrast, Ru(0001) layers with d ≤ 25 nm are more conductive than Co(0001) layers, which is attributed to the shorter λ for Ru. The determined λ-values are utilized in combination with the Fuchs-Sondheimer and Mayadas-Shatzkes models to predict and compare the resistance of polycrystalline interconnect lines, assuming a grain boundary reflection coefficient R = 0.4 and accounting for the thinner barrier/adhesion layers available to Ru and Co metallizations. This results in predicted 10 nm half-pitch line resistances for Ru, Co, and Cu of 1.0, 2.2, and 2.1 kΩ/µm, respectively. 
    more » « less
  5. Abstract

    Here we assess the applicability of graph neural networks (GNNs) for predicting the grain-scale elastic response of polycrystalline metallic alloys. Using GNN surrogate models, grain-averaged stresses during uniaxial elastic tension in low solvus high-refractory (LSHR) Ni Superalloy and Ti 7 wt%Al (Ti-7Al) are predicted as example face-centered cubic and hexagonal closed packed alloys, respectively. A transfer learning approach is taken in which GNN surrogate models are trained using crystal elasticity finite element method (CEFEM) simulations and then the trained surrogate models are used to predict the mechanical response of microstructures measured using high-energy X-ray diffraction microscopy (HEDM). The performance of using various microstructural and micromechanical descriptors for input nodal features to the GNNs is explored through comparisons to traditional mean-field theory predictions, reserved full-field CEFEM data, and measured far-field HEDM data. The effects of elastic anisotropy on GNN model performance and outlooks for the extension of the framework are discussed.

     
    more » « less