skip to main content


Title: High‐Pressure and High‐Temperature Single‐Crystal Elasticity of Cr‐Pyrope: Implications for the Density and Seismic Velocity of Subcontinental Lithospheric Mantle
Abstract

Single‐crystal X‐ray diffraction and Brillouin spectroscopy experiments were performed on a natural Cr‐pyrope (Prp71.0Alm12.6Sps0.7Grs3.5Uvr12.2) at high pressure and high temperature up to 11.0 GPa and 800 K. Fitting the collected data to the third‐order finite strain equation yields bulk modulus (KS0), shear modulus (G0), their pressure ((∂KS/∂P)Tand (∂G/∂P)T) and temperature ((∂KS/∂T)Pand(∂G/∂T)P) derivatives,KS0 = 167.7(8) GPa,G0 = 91.5(5) GPa, (∂KS/∂P)T = 4.3(1), (∂G/∂P)T = 1.4(1), (∂KS/∂T)P = 0.0175(1) GPa/K and (∂G/∂T)P = 0.0073(1) GPa/K. Using the obtained results, we examined whether the elastic properties of the Cr‐pyrope can be accurately calculated from those of endmembers including pyrope, almandine, grossular, and uvarovite assuming a linear relationship between elastic properties and composition (end‐member model). The results indicate that the end‐member model provides a sufficient approximation for the elastic properties of Cr‐pyrope in calculating the density and velocity of the subcontinental lithospheric mantle (SCLM). We modeled the densities and velocities of three typical types of SCLM (Archon, Proton, and Tecton) in order to investigate how the variation of chemical composition influences the SCLM. We obtained that the compositional change from the Archon to the Tecton increases the density of the SCLM significantly, which can be an important prerequisite for SCLM delamination. However, the compositional variation only slightly changes the velocity of the SCLM and the change is within the uncertainty of the calculation. Moreover, in comparison to the velocity,ρ/VPandρ/VSare much more sensitive to the compositional change of the SCLM.

 
more » « less
NSF-PAR ID:
10444381
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
8
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present ab initio (LDA + Usc) studies of high‐temperature and high‐pressure elastic properties of pure as well as iron‐bearing (ferrous, Fe2+, and ferric, Fe3+) and aluminum‐bearing MgSiO3postperovskite, the likely dominant phase in the deep lower mantle of the Earth. Thermal effects are addressed within the quasiharmonic approximation by combining vibrational density of states and static elastic coefficients. Aggregate elastic moduli and sound velocities for the Mg end members are successfully compared with scarce experimental data available. Effects of iron (Fe) and aluminum (Al) substitutions on elastic properties and their pressure and temperature dependence have been thoroughly investigated. At the observed perovskite to postperovskite transition (P = 125 GPa andT = 2,500 K), compressional and shear velocities increase by 0–1% and 1.5–3.75%, respectively. This observation is consistent with some seismic studies of the Ddiscontinuity beneath the Caribbean, which suggests that our robust estimates of elastic properties of the postperovskite phase will be very helpful to understand lateral velocity variations in the deep lower mantle region and to constrain its composition and thermal structure.

     
    more » « less
  2. Abstract

    Omphacite is a major mineral phase of eclogite, which provides the main driving force for the slab subduction into the Earth's interior. We have measured the single‐crystal elastic moduli of omphacite at high pressures for the first time up to 18 GPa at ambient temperature using Brillouin spectroscopy. A least squares fit of the velocity‐pressure data to the third‐order finite strain equation of state yieldsKS0′ = 4.5 (3),G0′ = 1.6 (1) withρ0 = 3.34 (1) g/cm3,KS0 = 123 (3) GPa, andG0 = 74 (2) GPa. In addition, the synchrotron single‐crystal X‐ray diffraction data have been collected up to 18 GPa and 700 K. The fitting to Holland‐Powell thermal‐pressure equation of state yieldsKT0′ = 4.6 (5) andα0 = 2.7 (8) × 10−5 K−1. Based on the obtained thermoelastic parameters of omphacite, the anisotropic seismic velocities of eclogite are modeled and compared with pyrolite between 200 and 500 km. The largest contrast between the eclogite and pyrolite in terms of seismic properties is observed between ~310 and 410 km.

     
    more » « less
  3. Abstract

    Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yieldsV0 = 83.29 ± 0.03 (Å3),K0 = 232 ± 9 GPa,K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV0 = 54.82 ± 0.02 (Å3),K0 = 152 ± 2 GPa,K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores.

     
    more » « less
  4. Abstract

    Identifying and locating the geochemical and geophysical heterogeneities in the Earth’s interior is one of the most important and challenging tasks for the deep Earth scientists. Subducted oceanic crust metamorphizes into the dense eclogite in the upper mantle and is considered as a major cause of geochemical and geophysical heterogeneities in the deep Earth. In order to detect eclogitic materials inside the Earth, precise measurements of the high pressure‐temperature single‐crystal elasticity of major minerals in eclogite are thus exceedingly important. Omphacite, a Na,Al‐bearing clinopyroxene, constitutes up to 75 vol% of eclogite. In the present study, we performed the first high pressure‐temperature single‐crystal elasticity measurements of omphacite using Brillouin spectroscopy. Utilizing the finite‐strain approach, we obtained the following thermoelastic parameters for omphacite:KS0’ = 4.5(1),G0’ = 1.53(5), ∂KS0/∂T = −0.029(5) GPa/K, ∂G0/∂T = −0.013(5) GPa/K, withKS0 = 123(3) GPa,G0 = 74(2) GPa, andρ0 = 3.34(1) g/cm3. We found that the seismic velocities of undeformed eclogite are similar to pyrolite at the depths of 200–300 and 410–500 km, thus eclogite is seismically invisible at these depths. Combined with the lattice‐preferred orientations of the omphacite in naturally deformed eclogites, we also modeled seismic anisotropy of eclogite at various pressure‐temperature conditions. A 10 km thick subducted eclogitic crust can result in ∼0.2 s shear wave splitting in the Earth’s upper mantle.

     
    more » « less
  5. Abstract Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (Cij) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal Cij of (Al,Fe)-bearing bridgmanite, Mg0.88Fe0.1Al0.14Si0.90O3 (Fe10-Al14-Bgm) with Fe3+/ΣFe = ~0.65, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (–0.50, 0.05, –0.86) and (0.65, –0.59, 0.48), that are sensitive to deriving all nine Cij, are used for compressional and shear wave velocity (νP and νS) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all Cij of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% (±1σ), except C55 and C23, which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: KS = 326 ± 4 GPa, µ = 211 ± 2 GPa, KS′ = 3.32 ± 0.04, and µ′ = 1.66 ± 0.02 GPa. The high-pressure aggregate νS and νP of Fe10-Al14-Bgm are 2.6–3.5% and 3.1–4.7% lower than those of MgSiO3 bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models. 
    more » « less