Abstract We analyze Very Large Telescope/UVES observations of the quasar SDSS J024221.87+004912.6. We identify four absorption outflow systems: a Civbroad absorption line (BAL) atv≈ −18,000 km s−1and three narrower low-ionization systems with centroid velocities ranging from –1200 to –3500 km s−1. These outflows show similar physical attributes to the [Oiii] outflows studied by Liu et al. (2013). We find that two of the systems are energetic enough to contribute to active galactic nucleus feedback, with one system reaching above 5% of the quasar’s Eddington luminosity. We also find that this system is at a distance of 67 kpc away from the quasar, the farthest detected mini-BAL absorption outflow from its central source to date. In addition, we examine the time-variability of the BAL and find that its velocity monotonically increases, while the trough itself becomes shallower over time.
more »
« less
VLT/UVES observation of the SDSS J2357−0048 outflow
ABSTRACT We found a broad absorption line (BAL) outflow in the VLT/UVES spectrum of the quasar SDSS J235702.54−004824.0, in which we identified four subcomponents. We measured the column densities of the ions in one of the subcomponents (v = −1600 km s−1), which include O i and Fe ii. We found the kinetic luminosity of this component to be at most $$\sim 2.4{{\ \rm per\ cent}}$$ of the quasar’s Eddington luminosity. This is near the amount required to contribute to active galactic nucleus feedback. We also examined the time variability of a C iv mini-BAL found at v = −8700 km s−1, which shows a shallower and narrower absorption feature attached to it in previous SDSS observations from 2000 to 2001, but not in the spectra from 2005 and onwards.
more »
« less
- Award ID(s):
- 2106249
- PAR ID:
- 10372896
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 1048-1057
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We analyse the VLT/UVES spectrum of the quasar SDSS J143907.5-010616.7, retrieved from the UVES Spectral Quasar Absorption Database. We identify two outflow systems in the spectrum: a mini broad absorption line (mini-BAL) system and a narrow absorption line (NAL) system. We measure the ionic column densities of the mini-BAL ($$v$$ = −1550 km s−1) outflow, which has excited state absorption troughs of $${\rm Fe\, \rm {\small {ii}}}$$. We determine that the electron number density $$\log {n_e}=3.4^{+0.1}_{-0.1}$$, based on the ratios between the excited and ground state abundances of $${\rm Fe\, \rm {\small {ii}}}$$, and find the kinetic luminosity of the outflow to be $${\lesssim}0.1\,\hbox{per cent}$$ of the quasar’s Eddington luminosity, making it insufficient to contribute to AGN feedback.more » « less
-
Abstract We present the results of an investigation of a highly variable Civbroad absorption line (BAL) feature in spectra of the quasar SBS 1408+544 (z= 2.337) that shows a significant shift in velocity over time. This source was observed as a part of the Sloan Digital Sky Survey (SDSS) Reverberation Mapping project and the SDSS-V Black Hole Mapper Reverberation Mapping project, and has been included in two previous studies, both of which identified significant variability in a high-velocity CivBAL on timescales of just a few days in the quasar rest frame. Using ∼130 spectra acquired over 8 yr of spectroscopic monitoring with SDSS, we have determined that this BAL is not only varying in strength, but is also systematically shifting to higher velocities. Using cross-correlation methods, we measure the velocity shifts (and corresponding acceleration) of the BAL over a wide range of timescales, measuring an overall velocity shift of km s−1over the 8 yr monitoring period. This corresponds to an average rest-frame acceleration ofa= 1.04 cm s−2, though the magnitude of the acceleration on shorter timescales is not constant throughout. We place our measurements in the context of BAL-acceleration models and examine various possible causes of the observed velocity shift.more » « less
-
ABSTRACT We have identified a broad absorption line (BAL) outflow in the HST/STIS spectrum of the quasar QSO B0254-3327B at velocity v = −3200 km s−1. The outflow has absorption troughs from ions such as Ne viii, Na ix, Si xii, and Ne v. We also report the first detection of S xiv absorption troughs, implying very high ionization. Via measurement of the ionic column densities, photoionization analysis, and determination of the electron number density of the outflow, we found the kinetic luminosity of the outflow system to be up to ∼1 per cent of the quasar’s Eddington luminosity, or ∼5 per cent of the bolometric luminosity, making it a potential contributor to AGN feedback. A solution with two ionization phases was needed, as a single phase was not sufficient to satisfy the constraints from the measured ionic column densities. We find that the ionization parameter of the very high-ionization phase of the outflow is within the expected range of an X-ray warm absorber. We also examined the physical properties of the outflow of Q0254-334 along with previously studied extreme UV outflows, with a total sample of 24 outflow systems, finding a weak negative correlation between outflow velocity and distance from the central source, with larger distances corresponding to slower velocities. The very high-ionization phase of the Q0254-334 outflow has one of the highest ionization parameters of UV absorption outflows to date, which we attribute to the presence of S xiv.more » « less
-
ABSTRACT We present the analysis of the absorption troughs of six outflows observed in quasar SDSS J1130 + 0411 ($$z$$ ≈ 3.98) with radial velocities ranging from −2400 to $$-15\, 400$$ km s−1. These spectra were taken with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph over the rest-frame wavelength range of 1135–1890 Å. In the main outflow system ($$v$$ ≈ −3200 km s−1), we identify Fe ii and several Fe ii* absorption troughs, as well as Si ii and Si ii* troughs, which we use to determine the electron number density $$\log n_e = 2.6_{-0.7}^{+0.8}$$ cm−3. Using the column densities of these and other ions, we determine a photoionization solution with hydrogen column density $$\log N_H = 21.44_{-0.33}^{+0.24}$$ cm−2 and ionization parameter $$\log U_H = -1.75_{-0.45}^{+0.28}$$. From these values, we derive the distance $$R = 16_{-11}^{+23}$$ kpc, the average mass flow rate $$\dot{M} = 4100_{-2400}^{+6600}$$ M⊙ yr−1, and the kinetic luminosity $$\log \dot{E}_k = 46.13_{-0.37}^{+0.41}$$ erg s−1. This $$\dot{E}_k$$ is $$1.4_{-0.8}^{+2.2}$$ per cent of the quasar’s Eddington luminosity, and therefore contributes significantly to AGN feedback.more » « less
An official website of the United States government
