skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: A Bayesian approach to high-fidelity interferometric calibration – I. Mathematical formalism
ABSTRACT High-fidelity radio interferometric data calibration that minimizes spurious spectral structure in the calibrated data is essential in astrophysical applications, such as 21 cm cosmology, which rely on knowledge of the relative spectral smoothness of distinct astrophysical emission components to extract the signal of interest. Existing approaches to radio interferometric calibration have been shown to impart spurious spectral structure to the calibrated data if the sky model used to calibrate the data is incomplete. In this paper, we introduce BayesCal: a novel solution to the sky-model incompleteness problem in interferometric calibration, designed to enable high-fidelity data calibration. The BayesCal data model supplements the a priori known component of the forward model of the sky with a statistical model for the missing and uncertain flux contribution to the data, constrained by a prior on the power in the model. We demonstrate how the parameters of this model can be marginalized out analytically, reducing the dimensionality of the parameter space to be sampled from and allowing one to sample directly from the posterior probability distribution of the calibration parameters. Additionally, we show how physically motivated priors derived from theoretical and measurement-based constraints on the spectral smoothness of the instrumental gains can be used to constrain the calibration solutions. In a companion paper, we apply this algorithm to simulated observations with a HERA-like array and demonstrate that it enables up to four orders of magnitude suppression of power in spurious spectral fluctuations relative to standard calibration approaches.  more » « less
Award ID(s):
1907777
PAR ID:
10372897
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 910-934
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In a companion paper, we presented bayescal, a mathematical formalism for mitigating sky-model incompleteness in interferometric calibration. In this paper, we demonstrate the use of bayescal to calibrate the degenerate gain parameters of full-Stokes simulated observations with a HERA-like hexagonal close-packed redundant array, for three assumed levels of completeness of the a priori known component of the calibration sky model. We compare the bayescal calibration solutions to those recovered by calibrating the degenerate gain parameters with only the a priori known component of the calibration sky model both with and without imposing physically motivated priors on the gain amplitude solutions and for two choices of baseline length range over which to calibrate. We find that bayescal provides calibration solutions with up to 4 orders of magnitude lower power in spurious gain amplitude fluctuations than the calibration solutions derived for the same data set with the alternate approaches, and between ∼107 and ∼1010 times smaller than in the mean degenerate gain amplitude, on the full range of spectral scales accessible in the data. Additionally, we find that in the scenarios modelled only bayescal has sufficiently high fidelity calibration solutions for unbiased recovery of the 21-cm power spectrum on large spectral scales (k∥ ≲ 0.15 hMpc−1). In all other cases, in the completeness regimes studied, those scales are contaminated. 
    more » « less
  2. null (Ed.)
    ABSTRACT In 21-cm cosmology, precision calibration is key to the separation of the neutral hydrogen signal from very bright but spectrally smooth astrophysical foregrounds. The Hydrogen Epoch of Reionization Array (HERA), an interferometer specialized for 21-cm cosmology and now under construction in South Africa, was designed to be largely calibrated using the self-consistency of repeated measurements of the same interferometric modes. This technique, known as redundant-baseline calibration resolves most of the internal degrees of freedom in the calibration problem. It assumes, however, on antenna elements with identical primary beams placed precisely on a redundant grid. In this work, we review the detailed implementation of the algorithms enabling redundant-baseline calibration and report results with HERA data. We quantify the effects of real-world non-redundancy and how they compare to the idealized scenario in which redundant measurements differ only in their noise realizations. Finally, we study how non-redundancy can produce spurious temporal structure in our calibration solutions – both in data and in simulations – and present strategies for mitigating that structure. 
    more » « less
  3. null (Ed.)
    ABSTRACT Precision calibration poses challenges to experiments probing the redshifted 21-cm signal of neutral hydrogen from the Cosmic Dawn and Epoch of Reionization (z ∼ 30–6). In both interferometric and global signal experiments, systematic calibration is the leading source of error. Though many aspects of calibration have been studied, the overlap between the two types of instruments has received less attention. We investigate the sky based calibration of total power measurements with a HERA dish and an EDGES-style antenna to understand the role of autocorrelations in the calibration of an interferometer and the role of sky in calibrating a total power instrument. Using simulations we study various scenarios such as time variable gain, incomplete sky calibration model, and primary beam model. We find that temporal gain drifts, sky model incompleteness, and beam inaccuracies cause biases in the receiver gain amplitude and the receiver temperature estimates. In some cases, these biases mix spectral structure between beam and sky resulting in spectrally variable gain errors. Applying the calibration method to the HERA and EDGES data, we find good agreement with calibration via the more standard methods. Although instrumental gains are consistent with beam and sky errors similar in scale to those simulated, the receiver temperatures show significant deviations from expected values. While we show that it is possible to partially mitigate biases due to model inaccuracies by incorporating a time-dependent gain model in calibration, the resulting errors on calibration products are larger and more correlated. Completely addressing these biases will require more accurate sky and primary beam models. 
    more » « less
  4. Abstract We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over 34 petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available 18 months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio astronomy software packages. In order to populate the database with calibration solutions from the last 6 yr we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database, we present an analysis of the stability of the MWA calibration solutions over long time intervals. 
    more » « less
  5. null (Ed.)
    ABSTRACT Calibration precision is currently a limiting systematic in 21 cm cosmology experiments. While there are innumerable calibration approaches, most can be categorized as either ‘sky-based,’ relying on an extremely accurate model of astronomical foreground emission, or ‘redundant,’ requiring a precisely regular array with near-identical antenna response patterns. Both of these classes of calibration are inflexible to the realities of interferometric measurement. In practice, errors in the foreground model, antenna position offsets, and beam response inhomogeneities degrade calibration performance and contaminate the cosmological signal. Here, we show that sky-based and redundant calibration can be unified into a highly general and physically motivated calibration framework based on a Bayesian statistical formalism. Our new framework includes sky-based and redundant calibration as special cases but can additionally support relaxing the rigid assumptions implicit in those approaches. We present simulation results demonstrating that, in a simple case, working in an intermediate regime between sky-based and redundant calibration improves calibration performance. Our framework is highly general and encompasses novel calibration approaches including techniques for calibrating compact non-redundant arrays, calibrating to incomplete sky models, and constraining calibration solutions across frequency. 
    more » « less