skip to main content


Title: Production of a NiO/Al primary battery employing powder‐based electrodes
Abstract

This paper describes the use of aluminum and zinc as anodic materials for a battery employing nickel (II) oxide (NiO) as cathode. Comparison of both materials resulted in the development of a compact, cost effective, and easy to use primary NiO/Al battery employing an alkaline electrolyte. The system features electrodes composed of powder forms of the active materials on modified paper substrates that are contained in a simple multilayer design utilizing thin laminated plastic materials to provide structure and flexibility to the battery as well as a paper separator. Various concentrations of potassium hydroxide (KOH) electrolyte were examined and maximum performance was observed at 6 M KOH. A maximum current density and power density of 1.94 mA/cm2and 1 mW/cm2, respectively was achieved. This user‐friendly device was able to produce a maximum capacity of 2.33 mAh/g when 2 mA/g was applied. This work demonstrates the viability of a paper‐based battery featuring powder electrodes as a possible power source for microelectronic devices.

 
more » « less
NSF-PAR ID:
10372899
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
41
Issue:
1-2
ISSN:
0173-0835
Page Range / eLocation ID:
p. 131-136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A sliding electrolyte metal‐air microbattery driven by natural eye blinking motion is demonstrated as a source of electrical energy that can be integrated with smart contact lens platforms. The metal‐air battery (footprint 10 mm2) consists of a Mg anode and a Pt cathode, patterned on an insulating substrate and the battery electrolyte is a film of eye‐tear fluid that is periodically dragged on top of the electrodes during the natural eye‐blinking cycle, which activates the battery. When tested with an eye emulator, the open‐circuit voltage across the eye‐tear activated metal‐air battery (ETMAB) is 2.2 V. Impedance matching analysis reveals a maximum battery‐specific capacity of 3561 mAh g–1obtained at a discharge current density of 5 mA cm–2. The blinking activated battery exhibits the maximum generated power density of 1.3 mW cm–2at the load of 740 Ω. The blinking ETMAB delivers eight times higher energy output and more than three times longer lifetime than achievable with static ETMAB designs.

     
    more » « less
  2. It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, it is also reported that the encapsulation approach causes unfavorable carbon agglomeration with low dimensional carbons and a low energy density of the battery with high dimensional carbons. Although an effort to induce defects in the cathode was made to promote sulfur conversion kinetic conditions, only one type of defect has demonstrated limited performance due to the strong adsorption of the uncatalyzed clusters to the defects (i.e.: catalyst poisoning). 5 To mitigate the issues listed above, herein we propose a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).6,7 Specifically, the electrode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in a reducing atmosphere (e.g.: H2) in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. A cathode treatment with benzene sulfonic acid further induces additional defects (non-intrinsic) to enhance the sulfur conversion kinetic. Furthermore, intrinsic defects engineering is expected to synergistically create favorable sulfur conversion conditions and mitigate the catalyst poisoning issue. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects, unfavored in the Li-S battery performance. Identified by SEM and TEM characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also the inner surface of the microchannels. High resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified sample demonstrate that the high concentration of the defects have been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with elevated sulfur utilization ratio, accelerated reaction kinetics, and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. 
    more » « less
  3. Abstract

    The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next‐generation energy‐dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)‐based electrolyte systems have demonstrated great success in enabling high‐stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic‐rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6,LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time‐of‐flight secondary‐ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g−1and a capacity of 0.5 mAh g−1in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high‐rate, reversible lithium storage, supplying 139 mAh g(LFP)−1at C/2 (≈0.991 mAh cm−2, @ 0.61 mA cm−2) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).

     
    more » « less
  4. Supercapacitor energy storage devices are well suited to meet the rigorous demands of future portable consumer electronics (PCEs) due to their high energy and power densities (i.e., longer battery-life and rapid charging, respectively) and superior operational lifetimes (10 times greater than lithium-ion batteries). To date, research efforts have been narrowly focused on improving the specific capacitance of these materials; however, emerging technologies are increasingly demanding competitive performance with regards to other criteria, including scalability of fabrication and electrochemical stability. In this regard, we developed a polyaniline (PANI) derivative that contains a carbazole unit copolymerized with 2,5-dimethyl-p-phenylenediamine (Cbz-PANI-1) and determined its optoelectronic properties, electrical conductivity, processability, and electrochemical stability. Importantly, the polymer exhibits good solubility in various solvents, which enables the use of scalable spray-coating and drop-casting methods to fabricate electrodes. Cbz-PANI-1 was used to fabricate electrodes for supercapacitor devices that exhibits a maximum areal capacitance of 64.8 mF cm–2 and specific capacitance of 319 F g–1 at a current density of 0.2 mA cm–2. Moreover, the electrode demonstrates excellent cyclic stability (≈ 83% of capacitance retention) over 1000 CV cycles. Additionally, we demonstrate the charge storage performance of Cbz-PANI-1 in a symmetrical supercapacitor device, which also exhibits excellent cyclic stability (≈ 91% of capacitance retention) over 1000 charge–discharge cycles. 
    more » « less
  5. Abstract

    Additive manufacturing of solid-state batteries is advantageous for improving the power density by increasing the geometric complexity of battery components, such as electrodes and electrolytes. In the present study, bulk three-dimensional Li1+xAlxTi2−x(PO4)3(LATP) electrolyte samples were prepared using the laser powder bed fusion (L-PBF) additive manufacturing method. Li3PO4(LPO) was added to LATP to compensate for lithium vaporization during processing. Chemical compositions included 0, 1, 3, and 5 wt. % LPO. Resulting ionic conductivity values ranged from 1.4 × 10−6–6.4 × 10−8S cm−1, with the highest value for the sample with a chemical composition of 3 wt. % LPO. Microstructural features were carefully measured for each chemical composition and correlated with each other and with ionic conductivity. These features and their corresponding ranges include: porosity (ranging from 5% to 19%), crack density (0.09–0.15 mm mm−2), concentration of residual LPO (0%–16%), and concentration and Feret diameter of secondary phases, AlPO4 (11%–18%, 0.40–0.61µm) and TiO2 (9%–11%, 0.50–0.78). Correlations between the microstructural features and ionic conductivity ranged from −0.88 to 0.99. The strongest negative correlation was between crack density and ionic conductivity (−0.88), confirming the important role that processing defects play in limiting the performance of bulk solid-state electrolytes. The strongest positive correlation was between the concentration of AlPO4 and ionic conductivity (0.99), which is attributed to AlPO4 acting as a sintering aid and the role it plays in reducing the crack density. Our results indicate that additions of LPO can be used to balance competing microstructural features to design bulk three-dimensional LATP samples with improved ionic conductivity. As such, refinement of the chemical composition offers a promising approach to improving the processability and performance of functional ceramics prepared using binderless, laser-based additive manufacturing for solid-state battery applications.

     
    more » « less