We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.
more » « less- Award ID(s):
- 1750341
- PAR ID:
- 10372901
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 21
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 38458
- Size(s):
- Article No. 38458
- Sponsoring Org:
- National Science Foundation
More Like this
-
Carbon nanotubes (CNTs) are quasi-one dimensional nanostructures that display both high thermal conductivity for potential thermal management applications and intriguing low-dimensional phonon transport phenomena. In comparison to the advances made in the theoretical calculation of the lattice thermal conductivity of CNTs, thermal transport measurements of CNTs have been limited by either the poor temperature sensitivity of Raman thermometry technique or the presence of contact thermal resistance errors in sensitive two-probe resistance thermometry measurements. Here we report advances in a multi-probe measurement of the intrinsic thermal conductivity of individual multi-walled CNT samples that are transferred from the growth substrate onto the measurement device. The sample-thermometer thermal interface resistance is directly measured by this multi-probe method and used to model the temperature distribution along the contacted sample segment. The detailed temperature profile helps to eliminate the contact thermal resistance error in the obtained thermal conductivity of the suspended sample segment. A differential electro-thermal bridge measurement method is established to enhance the signal-to-noise ratio and reduce the measurement uncertainty by over 40%. The obtained thermal resistances of multiple suspended segments of the same MWCNT samples increase nearly linearly with increasing length, revealing diffusive phonon transport as a result of phonon-defect scattering in these MWCNT samples. The measured thermal conductivity increases with temperature and reaches up to 390 ± 20 W m-1 K-1 at room temperature for a 9-walled MWCNT. Theoretical analysis of the measurement results suggests submicron phonon mean free paths due to extrinsic phonon scattering by extended defects such as grain boundaries. The obtained thermal conductivity is decreased by a factor of 3 upon electron beam damage and surface contamination of the CNT sample.more » « less
-
Summary Leaf optical properties impact leaf energy balance and thus leaf temperature. The effect of leaf development on mid‐infrared (MIR) reflectance, and hence thermal emissivity, has not been investigated in detail.
We measured a suite of morphological characteristics, as well as directional‐hemispherical reflectance from ultraviolet to thermal infrared wavelengths (250 nm to 20 µm) of leaves from five temperate deciduous tree species over the 8 wk following spring leaf emergence.
By contrast to reflectance at shorter wavelengths, the shape and magnitude of MIR reflectance spectra changed markedly with development. MIR spectral differences among species became more pronounced and unique as leaves matured. Comparison of reflectance spectra of intact vs dried and ground leaves points to cuticular development – and not internal structural or biochemical changes – as the main driving factor. Accompanying the observed spectral changes was a drop in thermal emissivity from about 0.99 to 0.95 over the 8 wk following leaf emergence.
Emissivity changes were not large enough to substantially influence leaf temperature, but they could potentially lead to a bias in radiometrically measured temperatures of up to 3 K. Our results also pointed to the potential for using MIR spectroscopy to better understand species‐level differences in cuticular development and composition.
-
We report on the design, construction, and performance of a custom apparatus built to measure the frequency- and temperature-dependent absorptivity of millimeter-wave light by cosmic analog dusts. We highlight the unique challenges faced as well as a few key innovations that are part of the instrument. Among those is an ultra-compact Fourier transform spectrometer. We have measured its effective frequency range and FWHM resolution to be 150–2100 GHz and
, respectively. Another innovation is a cold sample positioner whose temperature can be controlled within the range of 3.7–50 K. The use of a pulse-tube cryocooler results in a pulse-synchronous signal that dominates the detector (bolometer) signal. Methods used to address that challenge are also presented. -
Abstract Recent work in ultra-high temperature in situ electron microscopy has presented the need for accurate, contact-free temperature determination at the microscale. Optical measurement based on thermal radiation (pyrometry) is an attractive solution but can be difficult to perform correctly due to effects, such as emissivity and optical transmission, that must be accounted for. Here, we present a practical guide to calibrating and using a spectral pyrometry system, including example code, using a Czerny-Turner spectrometer attached to a transmission electron microscope. Calibration can be accomplished using a thermocouple or commercial heated sample holder, after which arbitrary samples can be reliably measured for temperatures above ∼600∘C. An accuracy of 2% can be expected with the possibility of sub-second temporal resolution and sub-Kelvin temperature resolution. We then demonstrate this capability in conjunction with traditional microscopic techniques, such as diffraction-based strain measurement for thermal expansion coefficient, or live-video sintering evolution.
-
Bauxite and silica particles are candidate materials for solar thermal energy storage at high temperatures. The temperature-dependent emittance of packed beds with bauxite and silica particles was measured using a newly upgraded emissometer at wavelengths 2 μm ≤ λ ≤ 16 μm and temperatures up to ~730 K. The room-temperature emittance was obtained from the measured directional-hemispherical reflectance. A fused silica disc was used to test the emissometer by comparing the measured spectral emittance with the calculated emittance from a fitted Lorentz oscillator model. For the polycrystalline silica particles and the fused silica disc, the measured emittance increases with temperature in the mid-infrared region. The underlying mechanism is interpreted as the temperature-dependent damping coefficient in the Lorentz oscillator model. Two types of bauxite particles with different compositions and sizes were investigated. For λ > 10 μm, the measured emittance at elevated temperatures is higher than that at room temperature. In the region 2 μm < λ < 6 μm, the temperature dependence varies for different types of particles. The total emittance of bauxite particle beds was calculated by spectral integration using Planck’s distribution at the prescribed temperature. The calculated total emittance is between 0.89 and 0.96, but it does not change monotonically with temperature.more » « less