skip to main content


Title: A rapid high‐precision analytical method for triple oxygen isotope analysis of CO 2 gas using tunable infrared laser direct absorption spectroscopy
Rationale

The simultaneous analysis of the three stable isotopes of oxygen—triple oxygen isotope analysis—has become an important analytical technique in natural sciences. Determination of the abundance of the rare17O isotope in CO2gas using magnetic sector isotope ratio mass spectrometry is complicated by the isobaric interference of17O by13C (13C16O16O and12C16O17O, both have mass 45 amu). A number of analytical techniques have been used to measure the17O/16O ratio of CO2gas. They either are time consuming and technically challenging or have limited precision. A rapid and precise alternative to the available analytical methods is desirable.

Methods

We present the results of triple oxygen isotope analyses using an Aerodyne tunable infrared laser direct absorption spectroscopy (TILDAS) CO2analyzer configured for16O,17O, and18O combined with a custom gas inlet system. We evaluate the sensitivity of our results to a number of parameters. CO2samples with a wide range of δ18O values (from −9.28‰ to 39.56‰) were measured and compared to results using the well‐established fluorination‐gas source mass spectrometry method.

Results

The TILDAS system has a precision (standard error, 2σ) of better than ±0.03‰ for δ18O and ±10 per meg for Δ′17O values, equivalent to the precision of previous analytical methods. Samples as small as 3 μmol CO2(equivalent to 300 μg CaCO3) can be analyzed with a total analysis time of ~30 min.

Conclusions

We have successfully developed an analytical technique for the simultaneous determination of the δ17O and δ18O values of CO2gas. The precision is equal to or better than that of existing techniques, with no additional chemical treatments required. Analysis time is rapid, and the system is easily automated so that large numbers of samples can be analyzed with minimal effort.

 
more » « less
PAR ID:
10372903
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
36
Issue:
21
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Blood water oxygen isotope compositions can provide valuable insights into physiological processes and ecological patterns. While blood samples are commonly drawn for medical or scientific purposes, blood fractions are infrequently measured for oxygen isotopic compositions (δ18O) because such measurements are time consuming and expensive.

    Methods

    We sampled blood from sheep, goats, and iguanas raised in field and animal laboratories into serum, EDTA, heparin, and uncoated plastic vials commonly used in medical and scientific research, then separated red blood cell (RBC) and plasma or serum blood fractions. These were injected into helium‐flushed Exetainer tubes where they naturally outgassed endogenous CO2(goat blood), or into He‐ and CO2‐flushed tubes (iguana blood). The CO2gas was sampled on a GasBench II system, and δ18O was measured by an isotope ratio mass spectrometer (IRMS).

    Results

    Repeated δ18O measurements were stable over multiple days. The addition of desiccated blood solids to water standards had little impact on their δ18O measurements, suggesting that organic molecular constituents within blood serum and plasma do not interfere with blood water δ18O values. We observed slight but statistically significant δ18O offsets between plasma, serum and RBC fractions. Mass‐dependent body water turnover times for iguanas were derived from the data.

    Conclusions

    We demonstrate that a simple blood‐CO2equilibration method using the GasBench can quickly, reliably and accurately characterize water δ18O in the plasma, RBC, and whole blood fractions of mammalian and reptilian blood samples (precision ≤ 0.1‰). This method will expand the application of blood stable isotope analysis in physiological and medical research.

     
    more » « less
  2. Rationale

    Analyses of the isotope ratios of nitrogen (15N/14N) and oxygen (18O/16O) in nitrate (NO3) with the denitrifier method require relatively high sample volumes at low concentrations (≤1 μM) to afford sufficient analyte for mass spectrometry, resulting in isotopic offsets compared to more concentrated samples of the same isotopic composition.

    Methods

    To uncover the origins of isotopic offsets, we analyzed the N and O isotope ratios of NO3reference materials spanning concentrations of 0.5–20 μM. We substantiated the incidence of volume‐dependent isotopic offsets, then investigated whether they resulted from (a) incomplete sample recovery during N2O sparging, (b) blanks – bacterial, atmospheric, or in reference material solutions – and (c) oxygen atom exchange with water during the bacterial conversion of NO3to N2O.

    Results

    Larger sample volumes resulted in modest offsets in δ15N, but substantial offsets in δ18O. N2O recovery from sparging was less complete at higher volumes, resulting in decreases in δ15N and δ18O due to associated isotope fractionation. Blanks increased detectably with volume, whereas oxygen atom exchange with water remained constant within batch analyses, being sensitive to neither sample volume nor salinity. The sizeable offsets in δ18O with volume are only partially explained by the factors considered in our analysis.

    Conclusions

    Our observations argue for bracketing of NO3samples with reference materials that emulate sample volumes (concentrations) to achieve improved measurement accuracy and foster inter‐comparability.

     
    more » « less
  3. Abstract

    The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.

     
    more » « less
  4. ABSTRACT Rationale

    Stable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay‐rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed.

    Methods

    We employed conventional nickel bomb fluorination combined with dual‐inlet isotope ratio mass spectrometry to establish precise δ18O and Δ′17O values for leached clay reference materials KGa‐1b and SHCa‐1, a kaolinite and a hectorite/smectite, respectively. We further measured leached KGa‐1b and SHCa‐1 pressed into pellets with a lithium fluoride as a binding agent for the laser fluorination method, allowing us to test the reproducibility between methods and utilize a standard laser chamber drift correction scheme.

    Results

    The laser fluorination technique yielded highly precise and reproducible δ18O and Δ′17O measurements for the KGa‐1b and SHCa‐1, aligning with bomb values of δ18O. This confirms the method's reliability and comparability to conventional isotope measurement techniques while also stressing the importance of proper sample preparation and laser chamber drift corrections.

    Conclusions

    This study demonstrates that laser fluorination is an effective method for accurately measuring the stable oxygen isotope composition of silicate clays or clay‐rich sediments when corrected with known silicate clay standards. These methods offer a valuable methodology for future research and applications that will significantly improve our understanding of past climate and environmental conditions.

     
    more » « less
  5. Introduction

    Astarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues.

    Methods

    Here we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution.

    Results

    SIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001.

    Discussion

    Age-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales.

     
    more » « less