skip to main content


Title: Latest Results from the CUORE Experiment
Abstract

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

 
more » « less
PAR ID:
10372918
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Low Temperature Physics
Volume:
209
Issue:
5-6
ISSN:
0022-2291
Page Range / eLocation ID:
p. 927-935
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0 ν = 5.6 × 10 24 yr for the $${0\nu \beta \beta }$$ 0 ν β β decay and $$\mathrm {S^{2\nu }_{1/2} = 2.1 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 2 ν = 2.1 × 10 24 yr for the $${2\nu \beta \beta }$$ 2 ν β β decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $$90\%$$ 90 % C.I. on the decay half lives is obtained as: $$\mathrm {(T_{1/2})^{0\nu }_{0^+_2} > 5.9 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 0 ν > 5.9 × 10 24 yr for the $$0\nu \beta \beta $$ 0 ν β β mode and $$\mathrm {(T_{1/2})^{2\nu }_{0^+_2} > 1.3 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 2 ν > 1.3 × 10 24 yr for the $$2\nu \beta \beta $$ 2 ν β β mode. These represent the most stringent limits on the DBD of $$^{130}$$ 130 Te to excited states and improve by a factor $$\sim 5$$ ∼ 5 the previous results on this process. 
    more » « less
  2. Abstract

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$40tof liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$137Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$0νββof$${}^{136}$$136Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

     
    more » « less
  3. Abstract

    Cryogenic calorimetric experiments to search for neutrinoless double-beta decay ($$0\nu \beta \beta $$0νββ) are highly competitive, scalable and versatile in isotope. The largest planned detector array, CUPID, is comprised of about 1500 individual Li$$_{2}$$2$$^{100}$$100MoO$$_4$$4detector modules with a further scale up envisioned for a follow up experiment (CUPID-1T). In this article, we present a novel detector concept targeting this second stage with a low impedance TES based readout for the Li$$_2$$2MoO$$_4$$4absorber that is easily mass-produced and lends itself to a multiplexed readout. We present the detector design and results from a first prototype detector operated at the NEXUS shallow underground facility at Fermilab. The detector is a 2-cm-side cube with 21 g mass that is strongly thermally coupled to its readout chip to allow rise-times of$$\sim $$0.5 ms. This design is more than one order of magnitude faster than present NTD based detectors and is hence expected to effectively mitigate backgrounds generated through the pile-up of two independent two neutrino decay events coinciding close in time. Together with a baseline resolution of 1.95 keV (FWHM) these performance parameters extrapolate to a background index from pile-up as low as$$5\cdot 10^{-6}$$5·10-6 counts/keV/kg/yr in CUPID size crystals. The detector was calibrated up to the MeV region showing sufficient dynamic range for$$0\nu \beta \beta $$0νββsearches. In combination with a SuperCDMS HVeV detector this setup also allowed us to perform a precision measurement of the scintillation time constants of Li$$_2$$2MoO$$_4$$4, which showed a primary component with a fast O(20 $$\upmu $$μs) time scale.

     
    more » « less
  4. Abstract

    The elliptic flow$$(v_2)$$(v2)of$${\textrm{D}}^{0}$$D0mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$D0)was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$sNN=5.02 TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$D0mesons were reconstructed at midrapidity$$(|y|<0.8)$$(|y|<0.8)from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$D0K-π+, in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$2<pT<12 GeV/c. The result indicates a positive$$v_2$$v2for non-prompt$${{\textrm{D}}^{0}}$$D0mesons with a significance of 2.7$$\sigma $$σ. The non-prompt$${{\textrm{D}}^{0}}$$D0-meson$$v_2$$v2is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$σsignificance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$2<pT<8GeV/c, and compatible with the$$v_2$$v2of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.

     
    more » « less
  5. Abstract

    The next generation of searches for neutrinoless double beta decay ($$0 \nu \beta \beta $$0νββ) are poised to answer deep questions on the nature of neutrinos and the source of the Universe’s matter–antimatter asymmetry. They will be looking for event rates of less than one event per ton of instrumented isotope per year. To claim discovery, accurate and efficient simulations of detector events that mimic$$0 \nu \beta \beta $$0νββis critical. Traditional Monte Carlo (MC) simulations can be supplemented by machine-learning-based generative models. This work describes the performance of generative models that we designed for monolithic liquid scintillator detectors like KamLAND to produce accurate simulation data without a predefined physics model. We present their current ability to recover low-level features and perform interpolation. In the future, the results of these generative models can be used to improve event classification and background rejection by providing high-quality abundant generated data.

     
    more » « less