skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Illustration of an object‐based approach to identify structural differences in tropical cyclone wind fields
Abstract

The meteorology community primarily assesses tropical cyclone (TC) forecast skill using track and intensity errors. These metrics are frequently uncorrelated and can offer conflicting information about model performance. Continued improvements in intensity forecasting require improved representation of physical processes over multiple scales, and model verification of TC spatial structure can contribute to these improvements. To date, there are limited studies into forecast model representation of wind fields. More work is needed to better understand model deficiencies in skillfully predicting TC size metrics. In this study, we demonstrate an object‐based approach that can reveal structural differences in TC wind fields. Object‐based methods have been underutilized, and these methods, along with spatial metrics, can serve as additional verification methods for assessing storm structure in both observations and model simulations. Specifically, we illustrate this approach by examining a major difference between the Tiedtke and Kain–Fritsch cumulus parametrization schemes: The Tiedtke scheme includes convective momentum transport while the Kain–Fritsch scheme does not. We create three experiments of Hurricane Isabel (2003) using the Weather Research and Forecasting model using the Kain–Fritsch and Tiedtke cumulus parametrization schemes and an altered Tiedtke scheme with convective momentum transport turned off. Within the three experiments, we generate a small ensemble of four simulations to avoid drawing erroneous conclusions due to growth of numerical noise. Then, we use object‐based methods to measure and compare spatial attributes of the low‐level wind fields to confirm the dominant influence of momentum transport in influencing the TC spatial structure. Our spatial metric approach offers an objective suite of structural attributes that could be useful in diverse applications. A future goal is to use spatial metrics in systematic verification studies of TCs in operational model forecasts and climate model simulations, which may offer great benefit to operational forecasters and numerical model developers.

 
more » « less
PAR ID:
10372920
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
148
Issue:
746
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2587-2606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Developmental Testbed Center (DTC) tested two convective parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model and compared them in terms of performance of forecasting tropical cyclones (TCs). Several TC forecasts were conducted with the scale-aware Simplified Arakawa Schubert (SAS) and Grell–Freitas (GF) convective schemes over the Atlantic basin. For this sample of over 100 cases, the storm track and intensity forecasts were superior for the GF scheme compared to SAS. A case study showed improved storm structure for GF when compared with radar observations. The GF run had increased inflow in the boundary layer, which resulted in higher angular momentum. An angular momentum budget analysis shows that the difference in the contribution of the eddy transport to the total angular momentum tendency is small between the two forecasts. The main difference is in the mean transport term, especially in the boundary layer. The temperature tendencies indicate higher contribution from the microphysics and cumulus heating above the boundary layer in the GF run. A temperature budget analysis indicated that both the temperature advection and diabatic heating were the dominant terms and they were larger near the storm center in the GF run than in the SAS run. The above results support the superior performance of the GF scheme for TC intensity forecast.

     
    more » « less
  2. Abstract

    Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and intensity, as these are some of the most important characteristics of TCs and are often the principal verification concerns of operational forecast centers. However, there is a growing need to verify other aspects of TCs as process-based validation techniques may be increasingly necessary for further track and intensity forecast improvements as well as improving communication of the broad impacts of TCs including inland flooding from precipitation. Here we present a set of TC-focused verification methods available via the Model Evaluation Tools (MET) ranging from traditional approaches to the application of storm-centric coordinates and the use of feature-based verification of spatially defined TC objects. Storm-relative verification using observed and forecast tracks can be useful for identifying model biases in precipitation accumulation in relation to the storm center. Using a storm-centric cylindrical coordinate system based on the radius of maximum wind adds additional storm-relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This powerful process-based model diagnostic and verification technique provides a framework for improved understanding of feedbacks between forecast tracks, intensity, and precipitation distributions. Finally, object-based verification including land masking capabilities provides even more nuanced verification options. Precipitation objects of interest, either the central core of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and quickly aggregated to build meaningful spatial and summary verification statistics.

     
    more » « less
  3. Abstract

    Tropical cyclone (TC) precipitation poses serious hazards including freshwater flooding. High-resolution hurricane models predict the location and intensity of TC rainfall, which can influence local evacuation and preparedness policies. This study evaluates 0–72-h precipitation forecasts from two experimental models, the Hurricane Analysis and Forecast System (HAFS) model and the basin-scale Hurricane Weather Research and Forecasting (HWRF-B) Model, for 2020 North Atlantic landfalling TCs. We use an object-based method that quantifies the shape and size of the forecast and observed precipitation. Precipitation objects are then compared for light, moderate, and heavy precipitation using spatial metrics (e.g., area, perimeter, elongation). Results show that both models forecast precipitation that is too connected, too close to the TC center, and too enclosed around the TC center. Collectively, these spatial biases suggest that the model forecasts are too intense even though there is a negative intensity bias for both models, indicating there may be an inconsistency between the precipitation configuration and the maximum sustained winds in the model forecasts. The HAFS model struggles with forecasting stratiform versus convective precipitation and with the representation of lighter (stratiform) precipitation during the first 6 h after initialization. No such spinup issues are seen in the HWRF-B forecasts, which instead exhibit systematic biases at all lead times and systematic issues across all rain-rate thresholds. Future work will investigate spinup issues in the HAFS model forecast and how the microphysics parameterization affects the representation of precipitation in both models.

     
    more » « less
  4. Abstract Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here, we present a prototype model that is trained solely on two inputs: Geo infrared imagery leading up to the synoptic time of interest and intensity estimates up to 6 h prior to that time. To estimate future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12 h by applying a deep autoregressive generative model (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a “nowcasting” convolutional neural network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error than the National Hurricane Center’s official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance. Significance Statement This work presents a new method of short-term probabilistic forecasting for tropical cyclone (TC) convective structure and intensity using infrared geostationary satellite observations. Our prototype model’s performance indicates that there is some value in observed and simulated future cloud-top temperature radial profiles for short-term intensity forecasting. The nonlinear nature of machine learning tools can pose an interpretation challenge, but structural forecasts produced by our model can be directly evaluated and, thus, may offer helpful guidance to forecasters regarding short-term TC evolution. Since forecasters are time limited in producing each advisory package despite a growing wealth of satellite observations, a tool that captures recent TC convective evolution and potential future changes may support their assessment of TC behavior in crafting their forecasts. 
    more » « less
  5. Abstract Hail forecasts produced by the CAM-HAILCAST pseudo-Lagrangian hail size forecasting model were evaluated during the 2019, 2020, and 2021 NOAA HazardousWeather Testbed Spring Forecasting Experiments. As part of this evaluation, HWT SFE participants were polled about their definition of a “good” hail forecast. Participants were presented with two different verification methods conducted over three different spatiotemporal scales, and were then asked to subjectively evaluate the hail forecast as well as the different verificaiton methods themselves. Results recommended use of multiple verification methods tailored to the type of forecast expected by the end-user interpreting and applying the forecast. The hail forecasts evaluated during this period included an implementation of CAM-HAILCAST in the Limited Area Model of the Unified Forecast System with the Finite Volume 3 (FV3) dynamical core. Evaluation of FV3-HAILCAST over both 1-h and 24-h periods found continued improvement from 2019 to 2021. The improvement was largely a result of wide intervariability among FV3 ensemble members with different microphysics parameterizations in 2019 lessening significantly during 2020 and 2021. Overprediction throughout the diurnal cycle also lessened by 2021. A combination of both upscaling neighborhood verification and an object-based technique that only retained matched convective objects was necessary to understand the improvement., agreeing with the HWT SFE participants’ recommendations for multiple verification methods. 
    more » « less