skip to main content


Title: Role of Intense Arctic Storm in Accelerating Summer Sea Ice Melt: An In Situ Observational Study
Abstract

Intense storms have been more frequently observed in the Arctic during recent years, in coincidence with extreme sea ice loss events. However, it is still not fully understood how storms drive such events due to deficient observations and modeling discrepancies. Here we address this problem by analyzing in situ observations acquired during an Arctic expedition, which uniquely captured an intense storm in summer 2016. The result shows a pronounced acceleration of sea ice loss during the storm process. Diagnostic analysis indicates a net energy loss at the ice surface, not supporting the accelerated melting. Although the open water surface gained net heat energy, it was insufficient to increase the mixed‐layer temperature to the observed values. Dynamic analysis suggests that storm‐driven increase in ocean mixing and upward Ekman pumping of the Pacific‐origin warm water tremendously increased oceanic heat flux. The thermal advection by the Ekman pumping led to a warmed mixed layer by 0.05°C–0.12°C and, in consequence, an increased basal sea ice melt rate by 0.1–1.7 cm day−1.

 
more » « less
NSF-PAR ID:
10372928
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic‐origin and Greenland meltwaters circulate cyclonically in the boundary current system encircling the Labrador Sea. The ability of this freshwater to penetrate the interior basin has important consequences for dense water formation and the lower limb of the Atlantic Meridional Overturning Circulation. However, the precise mechanisms by which the freshwater is transported offshore, and the magnitude of this flux, remain uncertain. Here, we investigate wind‐driven upwelling northwest of Cape Farewell using 4 years of high‐resolution data from the Overturning in the Subpolar North Atlantic Program west Greenland mooring array, deployed from September 2014–2018, along with Argo, shipboard, and atmospheric reanalysis data. A total of 49 upwelling events were identified corresponding to enhanced northwesterly winds, followed by reduced along‐stream flow of the boundary current and anomalously dense water present on the outer shelf. The events occur during the development stage of forward Greenland tip jets. During the storms, a cross‐stream Ekman cell develops that transports freshwater offshore in the surface layer and warm, saline, Atlantic‐origin waters onshore at depth. The net fluxes of heat and freshwater for a representative storm are computed. Using a one‐dimensional mixing model, it is shown that the freshwater input resulting from the locus of winter storms could significantly limit the wintertime development of the mixed layer and hence the production of Labrador Sea Water in the southeastern part of the basin.

     
    more » « less
  2. Abstract

    We compare the vertical hydrography of the Community Earth System Model Large Ensemble (CESM1‐LE) with observations from two specific periods: the Arctic Ice Dynamics Joint Experiment (AIDJEX; 1975–1976) and Ice‐Tethered Profilers (ITP; 2004–2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: (a) an absence of Pacific Waters in the water column and (b) a slight deepening of the May mixed layer contrary to observations, which show a large reduction in the mixed‐layer depth and an increase in stratification over the same time period. We examine processes controlling the sea ice mass balance using a one‐dimensional vertical heat budget in the light of the model limitations implied by these two biases. Results indicate that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season. Furthermore, we find that vertical advection associated with Ekman pumping has only a small effect on the vertical heat transport, even in early fall when the winds are strong and the pack ice is weak. Lastly, we estimate the impact of the missing Pacific Waters at 0.40 m of reduced winter ice growth.

     
    more » « less
  3. Abstract

    Ocean‐to‐ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2over 2006–2012 to 1.63 ± 0.08 W/m2over 2013–2018. We find that this is a result of thinner and less‐compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.

     
    more » « less
  4. null (Ed.)
    Abstract. Katabatic winds in coastal polynyas expose the ocean to extreme heat loss, causing intense sea ice production and dense water formation around Antarctica throughout autumn and winter. The advancing sea ice pack, combined with high winds and low temperatures, has limited surface oceanobservations of polynyas in winter, thereby impeding new insights into theevolution of these ice factories through the dark austral months. Here, wedescribe oceanic observations during multiple katabatic wind events duringMay 2017 in the Terra Nova Bay and Ross Sea polynyas. Wind speeds regularlyexceeded 20 m s−1, air temperatures were below −25 ∘C, and the oceanic mixed layer extended to 600 m. During these events, conductivity–temperature–depth (CTD)profiles revealed bulges of warm, salty water directly beneath the oceansurface and extending downwards tens of meters. These profiles reflect latent heat and salt release during unconsolidated frazil ice production, driven by atmospheric heat loss, a process that has rarely if ever been observed outside the laboratory. A simple salt budget suggests these anomalies reflect in situ frazil ice concentration that ranges from 13 to 266×10-3 kg m−3. Contemporaneous estimates of vertical mixing reveal rapid convection in these unstable density profiles and mixing lifetimes from 7 to 12 min. The individual estimates of ice production from the salt budget reveal the intensity of short-term ice production, up to 110 cm d−1 during the windiest events, and a seasonal average of 29 cm d−1. We further found that frazil ice production rates covary with wind speed and with location along the upstream–downstream length of the polynya. These measurements reveal that it is possible to indirectly observe and estimate the process of unconsolidated ice production in polynyas by measuring upper-ocean water column profiles. These vigorous ice production rates suggest frazil ice may be an important component in total polynya ice production. 
    more » « less
  5. Abstract

    In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic.

     
    more » « less