skip to main content


Title: Kinetics of crack healing and self‐repair behaviors in a sealant glass for SOFC applications
Abstract

A sealant is required for the solid oxide fuel cell (SOFC) to maintain hermeticity at high operating temperatures, keep fuel and oxidant from mixing, and avoid shorting of the cell stack. Glass and glass–ceramic materials are widely used as a sealant because their properties can be tailored to meet the stringent requirements of SOFC stack, but they are susceptible to cracking. In contrast, a promising concept of self‐repairable glass for seals is pursued for making reliable seals that can self‐repair cracks at the SOFC operating temperatures. This concept is studied through measuring crack‐healing kinetics and independent measurement of glass viscosity for relating to the observed self‐repair. The cracks on the glass surface are created using a Vickers indenter to achieve a well‐defined crack geometry, and then the glass is exposed to elevated temperatures for different length of times to study the crack‐healing kinetics. The crack‐healing kinetics is compared with the predictions of our theoretical model and found to be in good agreement. In addition, glass viscosity is extracted from the healing kinetics and compared with the independent measurement of viscosity measured from the dilatometry and sintering data to further validate the crack‐healing theoretical model. These results are presented and discussed.

 
more » « less
NSF-PAR ID:
10372935
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Journal of Applied Ceramic Technology
Volume:
19
Issue:
6
ISSN:
1546-542X
Page Range / eLocation ID:
p. 3149-3157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oxygen electrode in a proton-conductor based solid oxide cells is often a triple-conducting material that enables the transport and exchange of electrons (e-), oxygen ions (O2-), and protons (H+), thus expanding active areas to enhance the oxygen electrode activity. In this work, a theoretical model was developed to understand stability of tri-conducting oxygen electrode by studying chemical potentials of neutral species (i.e., μ_(O_2)^ , μ_(H_2)^ , and μ_(H_2 O)^ ) as functions of transport properties, operating parameters, and cell geometry. Our theoretical understanding shows that: (1) In a conventional oxygen-ion based solid oxide cell, a high μ_(O_2)^ (thus high oxygen partial pressure) exists in the oxygen electrode during the electrolysis mode, which may lead to the formation of cracks at the electrode/electrolyte interface. While in a proton-conductor based solid oxide cell, the μ_(O_2)^ is reduced significantly, suppressing the crack formation, and resulting in improved performance stability. (2) In a typical proton-conductor based solid oxide electrolyzer, the dependence of μ_(O_2)^ on the Faradaic efficiency is negligible. Hence, approaches to block the electronic current can improve the electrolysis efficiency while achieving stability. (3) The difference of the μ_(O_2)^ (thus p_(O_2)^ ) between the oxygen electrode and gas phase can be reduced by using higher ionic conducting components and improving electrode kinetics, which lead to further improvement of electrode stability. 
    more » « less
  2. Abstract

    Sand‐shale mélanges from the Kodiak accretionary complex and Shimanto belt of Japan record deformation during underthrusting along a paleosubduction interface in the range 150 to 350 °C. We use observations from these mélanges to construct a simple kinetic model that estimates the maximum time required to seal a single fracture as a measure of the rate of fault zone healing. Crack sealing involves diffusive redistribution of Si from mudstones with scaly fabric to undersaturated fluid‐filled cracks in sandstone blocks. Two driving forces are considered for the chemical potential gradient that drives crack sealing: (1) a transient drop in fluid pressure∆Pf, and (2) a difference in mean stress between scaly slip surfaces in mudstones and cracks in stronger sandstone blocks. Sealing times are more sensitive to mean stress than∆Pf, with up to four orders of magnitude faster sealing. Sealing durations are dependent on crack spacing, silica diffusion kinetics, and magnitude of the strength contrast between block and matrix, each of which is loosely constrained for conditions relevant to the seismogenic zone. We apply the model to three active subduction zones and find that sealing rates are fastest along Cascadia and several orders of magnitude slower for a given depth along Nicaragua and Tohoku slab‐top geotherms. The model provides (1) a framework for geochemical processes that influence subduction mechanics via crack sealing and shear fabric development and (2) demonstration that kinetically driven mass redistribution during the interseismic period is a plausible mechanism for creating asperities along smooth, sediment‐dominated convergent margins.

     
    more » « less
  3. Abstract

    Subduction interfaces exhibit a variety of slip behaviors, including megathrust and slow earthquakes. Field observations are consistent with crack‐seal deformation, in which tensile cracks are sealed by fluid‐transported solute. However, there are few constraints on the mass fluxes and length and time scales of such deformation and attendant increases in cohesion within the seismogenic zone. Here, we present a systematic geochemical investigation of mass transport associated with development of crack‐seal veins in the Shimanto Belt—an accretionary complex that preserves a record of plate boundary slip behavior at temperatures relevant to the seismogenic zone: 150–350°C. These mélanges show evidence for shear across decameter‐scale zones of deformation dominated by anastomosing scaly fabrics and pervasive veins. We use meso‐ and microstructural observations with geochemical observations of scaly fabrics and crack‐seal veins to evaluate the role of silica redistribution in healing fracture porosity along the plate interface and modulating slip behavior. Crack‐seal veins contain primarily quartz with albite and calcite, and vein textures provide evidence for partial sealing. Bulk rock analyses determined that the amount of phyllosilicates, specifically illite and chlorite, increases with temperature. A simple mass‐balance model based on the immobile chemical component TiO2shows a systematic trend in mobility for all three mélanges and increased element mobility as a function of temperature. Scaly fabrics and veins show compositional evidence for locally sourced mineral redistribution. This study supports a model where development of scaly slip surfaces and fracture healing through temperature‐dependent mineral redistribution can impact slip behavior and fluid flow along the subduction plate interface.

     
    more » « less
  4. Abstract

    Very long period (VLP, 2–100 s) seismic signals at basaltic volcanoes like Kilauea, Hawai‘i, and Mount Erebus, Antarctica are likely from resonant oscillations of magma within the shallow plumbing system. The system consists of conduits connected to cracks (dikes and sills) or reservoirs of other shapes. A quantitative understanding of wave propagation and resonance in a coupled conduit‐crack system is required to interpret observations. In this work, we idealize the system as an axisymmetric conduit coupled to a tabular crack, accounting for fluid inertia, compressibility, and viscosity, buoyancy, and crack wall elasticity. We perform time domain simulations and eigenmode analyses of the governing equations, linearized about a rest state. The fundamental mode or conduit‐reservoir mode reflects the balance of conduit magma inertia with buoyancy (and, for small cracks, crack wall elasticity). Magma oscillates in an effectively incompressible manner within the conduit, deflating and inflating the crack, which couples to the surrounding solid to produce observable surface displacements. For sufficiently low viscosity magmas, viscous effects are confined to boundary layers. Shorter period modes are primarily reverberating crack waves with negligible coupling to the conduit. Finally, we introduce an approximate reduced model for the conduit‐reservoir mode, which can also handle more general reservoir geometries (e.g., spherical chambers). The reduced model connects the observable VLP period and quality factor to two uniquely constrained parameters: the inviscid oscillation periodT0and the viscous diffusion timeτvisacross the conduit radius. Our models can be extended to study the seismic response of more complex magmatic systems.

     
    more » « less
  5. Summary Lay Description

    Asphalt binder, or bitumen, is the glue that holds aggregate particles together to form a road surface. It is derived from the heavy residue that remains after distilling gasoline, diesel and other lighter products out of crude oil. Nevertheless, bitumen varies widely in composition and mechanical properties. To avoid expensive road failures, bitumen must be processed after distillation so that its mechanical properties satisfy diverse climate and load requirements. International standards now guide these mechanical properties, but yield varying long‐term performance as local source composition and preparation methods vary.In situdiagnostic methods that can predict bitumen performance independently of processing history are therefore needed. The present work focuses on one promising diagnostic candidate: microscopic observation of internal bitumen structure. Past bitumen microscopy has revealed microstructures of widely varying composition, size, shape and density. A challenge is distinguishing bulk microstructures, which directly influence a binder's mechanical properties, from surface microstructures, which often dominate optical microscopy because of bitumen's opacity and scanning‐probe microscopy because of its inherent surface specificity. In previously published work, we used infrared microscopy to enhance visibility of bulk microstructure. Here, as a foil to this work, we use visible‐wavelength microscopy together with atomic‐force microscopy (AFM) specifically to isolatesurfacemicrostructure, to understand its distinct origin and morphology, and to demonstrate its unique sensitivity to surface alterations. To this end, optical microscopy complements AFM by enabling us to observe surface microstructures form at temperatures (50°C–70°C) at which bitumen's fluidity prevents AFM, and to observe surface microstructure beneath transparent, but chemically inert, liquid (glycerol) and solid (glass) overlayers, which alter surface tension compared to free surfaces. From this study, we learned, first, that, as bitumen cools, distinctly wrinkled surface microstructures form at the same temperature at which independent calorimetric studies showed crystallization in bitumen, causing it to release latent heat of crystallization. This shows that surface microstructures are likely precipitates of the crystallizable component(s). Second, a glycerol overlayer on the cooling bitumen results in smaller, less wrinkled, sparser microstructures, whereas a glass overlayer suppresses them altogether. In contrast, underlying smaller bulk microstructures are unaffected. This shows that surface tension is the driving force behind formation and wrinkling of surface precipitates. Taken together, the work advances our ability to diagnose bitumen samples noninvasively by clearly distinguishing surface from bulk microstructure.

     
    more » « less