skip to main content


Title: Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography
Abstract

Wetlands play an important role in watershed eco‐hydrology. The occurrence and distribution of wetlands in a landscape are affected by the surface topography and the hydro‐climatic conditions. Here, we propose a minimalist probabilistic approach to describe the dynamic behaviour of wetlandscape attributes, including number of inundated wetlands and the statistical properties of wetland stage, surface area, perimeter, and storage volume. The method relies on two major assumptions: (a) wetland bottom hydrologic resistance is negligible; and (b) groundwater level is parallel to the mean terrain elevation. The approach links the number ofinundatedwetlands (depressions with water) to the distribution of wetland bottoms and divides, and the position of the shallow water table. We compared the wetlandscape attribute dynamics estimated from the probabilistic approach to those determined from a parsimonious hydrologic model for groundwater‐dominated wetlands. We test the reliability of the assumptions of both models using data from six cypress dome wetlands in the Green Swamp Wildlife Management Area, Florida. The results of the hydrologic model for groundwater‐dominated wetlands showed that the number of inundated wetlands has a unimodal dependence on the groundwater level, as predicted by the probabilistic approach. The proposed models provide a quantitative basis to understand the physical processes that drive the spatiotemporal hydrologic dynamics in wetlandscapes impacted by shallow groundwater fluctuations. Emergent patterns in wetlandscape hydrologic dynamics are of key importance not only for the conservation of water resources, but also for a wide range of eco‐hydrological services provided by connectivity between wetlands and their surrounding uplands.

 
more » « less
NSF-PAR ID:
10372966
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
34
Issue:
6
ISSN:
0885-6087
Page Range / eLocation ID:
p. 1460-1474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape.

     
    more » « less
  2. Abstract

    Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.

     
    more » « less
  3. Abstract

    Sediment cores were collected under ice‐cover in late winter from three wetlands located along a subsurface hydrologic gradient within the Prairie Pothole Region of North America. Within each core, sediment porewaters were analyzed byin situvoltammetry for a suite of redox active species as a function of depth and revealed shifts in complex oxidation‐reduction dynamics related to ice cover in these wetlands. We observed a reduced sulfur boundary that is close to or above the sediment‐water interface (SWI) under ice cover. In contrast, the reduced sulfur boundary retreats several centimeters deeper in the sediments under ice‐free conditions. These findings are analogous to previous observations in shallow lakes that show anoxia at the SWI during ice cover but not under ice‐free conditions. Further, biogeochemical processes varied depending upon wetland type. During winter, sulfide levels in sediment porewaters in groundwater fed “flow‐through” wetlands were significantly lower than under ice‐free conditions. The converse applied to groundwater discharge wetlands where reduced sulfur concentrations in porewaters increased under ice cover. Decreases in ice cover extent and duration due to climate change coupled with profound landscape changes due to agriculture will affect the biogeochemical cycles of these wetlands and could lead to increased carbon emissions in the future.

     
    more » « less
  4. Abstract

    Wetlands in Arctic tundra support abundant breeding waterbirds. Wetland types differing in area, depth, vegetation, and invertebrate biomass density may vary in importance to birds, and in vulnerability to climate change. We studied availability and use of different wetland types by prelaying females of four species of sea ducks (Mergini) breeding on the Arctic Coastal Plain of Alaska, USA: long‐tailed ducks (Clangula hyemalis) and Steller's (Polysticta stelleri), spectacled (Somateria fischeri), and king eiders (Somateria spectabilis). All four species preferred shallow vegetated wetlands versus deeper lakes. The ducks spent almost all their active time feeding, but their occurrence in different wetland types was not affected by the relative biomass density of known prey or of all invertebrates that we sampled combined. Sea ducks strongly preferred wetlands dominated by emergent and submersedArctophila fulvaover those dominated by the sedgeCarex aquatilis, despite the much greater number, total area, and invertebrate biomass density ofCarexwetlands. The hens depend heavily on local invertebrate prey for protein to produce eggs; thus, their preference forArctophilawetlands likely reflects greater accessibility of prey in the near‐surface canopy and detritus ofArctophila. Such shallow wetlands decreased substantially in number (−17%) and area (−30%) over 62 years before 2013 and appear highly susceptible to further declines with climate warming. Impacts on sea ducks of climate‐driven changes in availability of important wetland types will depend on their adaptability in exploiting alternative wetlands.

     
    more » « less
  5. Abstract Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally. 
    more » « less