Wetlands play an important role in watershed eco‐hydrology. The occurrence and distribution of wetlands in a landscape are affected by the surface topography and the hydro‐climatic conditions. Here, we propose a minimalist probabilistic approach to describe the dynamic behaviour of wetlandscape attributes, including number of inundated wetlands and the statistical properties of wetland stage, surface area, perimeter, and storage volume. The method relies on two major assumptions: (a) wetland bottom hydrologic resistance is negligible; and (b) groundwater level is parallel to the mean terrain elevation. The approach links the number of
- PAR ID:
- 10372966
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 34
- Issue:
- 6
- ISSN:
- 0885-6087
- Page Range / eLocation ID:
- p. 1460-1474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Groundwater extraction compromises the function of groundwater-dependent ecosystems, such as freshwater wetlands. Identifying whether groundwater conservation restores wetland hydrology is a first step toward rehabilitating impaired wetlands. In the Tampa Bay region of Florida (U.S.), groundwater extraction rates have been declining since 1998, partly in response to desiccation of wetlands and waterbodies. This study uses monthly water-level data from 152 depressional wetlands over 28 years (1991–2018) to identify trends in wetland inundation, determine whether those trends vary among wetlands historically exposed to different rates of groundwater extraction, and describe relationships between the timing and extent of cutbacks in groundwater extraction and the timing and extent of changes in wetland inundation. Many wetlands (57 %) exhibited increased inundation in response to cutbacks in groundwater extraction, indicating that water conservation measures are inducing recovery. Further, increased inundation began in most wetlands immediately upon, or within two years of, the time extraction cutbacks occurred, although some recovering wetlands exhibited longer lags. An additional 26 % of wetlands had steady-state water levels with inundation similar to that of reference wetlands, potentially revealing a population of wetlands hydrologically unimpaired by nearby groundwater extraction. Another subset of wetlands (14 %) with steady-state water depths exhibited increasing deviations from basin-full water levels, suggesting subsidence of the wetland basin. Active intervention beyond cutbacks in groundwater extraction may be necessary to restore this subset, whereas passive restoration (reducing extraction) appears adequate for the majority of impacted wetlands. Rising water levels may amplify surface-water connections among wetlands, with ecological and biogeochemical consequences both for individual wetlands and for the whole wetlandscape. As a host of human activities continue to rely on groundwater extraction, this study demonstrates the potential for, as well as variability in, hydrological recovery across a wetland-rich, low-relief landscape following the enactment of water conservation policies.more » « less
-
Abstract Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally.more » « less
-
Abstract Wetlands provide valuable hydrological, ecological, and biogeochemical functions, both alone and in combination with other elements comprising the wetlandscape. Understanding the processes and mechanisms that drive wetlandscape functions, as well as their sensitivity to natural and man‐made alterations, requires a sound physical understanding of wetland hydrodynamics. Here, we develop and apply a single reservoir hydrologic model to a low‐relief karst wetlandscape in southwest Florida (≈103 km2of Big Cypress National Preserve) using precipitation
P and potential evapotranspirationPET as climatic drivers. This simple approach captures the dynamics of storage for individual wetlands across the entire wetlandscape and accurately predicts landscape discharge. Key model insights are the importance of depth‐dependent extinction of evapotranspirationET and the negligible effects of depth‐dependent specific yield, the effects of which are diluted by landscape relief. We identify three phases of the wetlandscape hydrological regime: dry, wet‐stagnant, and wet‐flowing. The model allowed a simple steady‐state analysis, which demonstrated the sudden seasonal shift between wet‐stagnant and wet‐flowing states, indicating a consistent threshold atP ≈PET . Notably, stage data from any single wetland appears sufficient for accurate whole‐landscape discharge prediction because of the relative homogeneity in timing and duration of local wetland hydrologic connectivity in this landscape. We also show that this method will be transferable to other wetlandscapes, where individual storage elements respond hydrologically synchronously, whereas model performance is expected to deteriorate for hydrologically more heterogeneous wetlandscapes. -
Abstract Wetlands in Arctic tundra support abundant breeding waterbirds. Wetland types differing in area, depth, vegetation, and invertebrate biomass density may vary in importance to birds, and in vulnerability to climate change. We studied availability and use of different wetland types by prelaying females of four species of sea ducks (Mergini) breeding on the Arctic Coastal Plain of Alaska, USA: long‐tailed ducks (
Clangula hyemalis ) and Steller's (Polysticta stelleri ), spectacled (Somateria fischeri ), and king eiders (Somateria spectabilis ). All four species preferred shallow vegetated wetlands versus deeper lakes. The ducks spent almost all their active time feeding, but their occurrence in different wetland types was not affected by the relative biomass density of known prey or of all invertebrates that we sampled combined. Sea ducks strongly preferred wetlands dominated by emergent and submersedArctophila fulva over those dominated by the sedgeCarex aquatilis , despite the much greater number, total area, and invertebrate biomass density ofCarex wetlands. The hens depend heavily on local invertebrate prey for protein to produce eggs; thus, their preference forArctophila wetlands likely reflects greater accessibility of prey in the near‐surface canopy and detritus ofArctophila . Such shallow wetlands decreased substantially in number (−17%) and area (−30%) over 62 years before 2013 and appear highly susceptible to further declines with climate warming. Impacts on sea ducks of climate‐driven changes in availability of important wetland types will depend on their adaptability in exploiting alternative wetlands. -
Abstract Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape.