Seafood is one of the most internationally-traded food commodities. International markets can provide higher revenues that benefit small-scale fishing communities but can also drive a decline in fished populations. Collective action in collective organizations such as fishing cooperatives is thought to enhance the sustainability of fished populations. However, our knowledge of how collective action enables fishing cooperatives to achieve positive social-ecological outcomes is dispersed across case studies. Here, we present a quantitative, national-level analysis exploring the relationship between different levels of collective action and social-ecological outcomes. We found that strong collective action in Mexican lobster cooperatives was related to both sustaining their fisheries and benefiting from international trade. In the 15 year study period, lobster cooperatives that demonstrate characteristics associated with strong collective action captured benefits from trade through high catch volumes and revenue. Despite lower (but stable) average prices, the biomass of their lobster populations was not compromised to reap these benefits. Individual case studies previously found that fishing cooperatives can support both positive social and ecological outcomes in small-scale fisheries. Our results confirm these findings at a national level and highlight the importance of strong collective action. Thus, our work contributes to a better understanding of the governance arrangements to promote fishing communities’ welfare and benefits from international trade and, therefore, will be invaluable to advancing small-scale fisheries governance.
more » « less- PAR ID:
- 10373007
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 10
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 105003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Coastal ecosystems and human communities are threatened worldwide by climate change, and shocks from social, market and political change. There is an urgent global need to promote resilient food production and livelihoods in the face of these shocks. Small-scale fisheries (SSF) in rural settings can be particularly vulnerable as they frequently lack the resources, rights and infrastructure to respond to shocks originating outside the focal systems. We examined ecological and social outcomes of environmental extremes in a SSF socio-ecological system (SES) by using long-term oceanographic (between 2010-2019) and ecological (2006-2018) data tracking change in a kelp forest ecosystem of Baja California, Mexico, and concurrent documentation of proactive and reactive actions of a fishing community organized in a cooperative. Results indicate a complex landscape of ‘winners’ and ‘losers’ among species and fisheries exposed to unprecedented environmental extremes, including marine heat waves and prolonged hypoxia, and a suite of adaptive actions by the local fishing cooperative, and others in the region, that have helped confront these rapid and drastic changes. Cooperatives have established voluntary marine reserves to promote recovery of affected populations and have invested in diversification of activities enabled by access rights, collective decision-making, and participatory science programs. Results indicate that local actions can support social and ecological resilience in the face of shocks, and that enabling locally-driven adaptation pathways is critical to resilience. This case study highlights the crucial importance of strengthening and supporting rights, governance, capacity, flexibility, learning, and agency for coastal communities to respond to change and sustain their livelihoods and ecosystems in the long run.more » « less
-
Abstract Both the ecological and social dimensions of fisheries are being affected by climate change. As a result, policymakers, managers, scientists and fishing communities are seeking guidance on how to holistically build resilience to climate change. Numerous studies have highlighted key attributes of resilience in fisheries, yet concrete examples that explicitly link these attributes to social‐ecological outcomes are lacking. To better understand climate resilience, we assembled 18 case studies spanning ecological, socio‐economic, governance and geographic contexts. Using a novel framework for evaluating 38 resilience attributes, the case studies were systematically assessed to understand how attributes enable or inhibit resilience to a given climate stressor. We found population abundance, learning capacity, and responsive governance were the most important attributes for conferring resilience, with ecosystem connectivity, place attachment, and accountable governance scoring the strongest across the climate‐resilient fisheries. We used these responses to develop an attribute typology that describes robust sources of resilience, actionable priority attributes and attributes that are case specific or require research. We identified five fishery archetypes to guide stakeholders as they set long‐term goals and prioritize actions to improve resilience. Lastly, we found evidence for two pathways to resilience: (1) building ecological assets and strengthening communities, which we observed in rural and small‐scale fisheries, and (2) building economic assets and improving effective governance, which was demonstrated in urban and wealthy fisheries. Our synthesis presents a novel framework that can be directly applied to identify approaches, pathways and actionable levers for improving climate resilience in fishery systems.
-
null (Ed.)Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning.more » « less
-
Abstract Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery.more » « less
-
Abstract Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human‐natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model based on the Dungeness crab (
Metacarcinus magister ), Chinook salmon (Oncorhynchus tshawytscha ), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on income patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with the longer‐lived groundfish population was not important because environmentally driven changes in groundfish recruitment were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of poor environmental conditions over short time scales. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a trade‐off between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers’ ability to diversify their fishing.