Failure prognostics is the process of predicting the remaining useful life (RUL) of machine components, which is vital for the predictive maintenance of industrial machinery. This paper presents a new deep learning approach for failure prognostics of rolling element bearings based on a Long Short-Term Memory (LSTM) predictor trained simultaneously within a Generative Adversarial Network (GAN) architecture. The LSTM predictor takes the current and past observations of a well-defined health index as an input, uses those to forecast the future degradation trajectory, and then derives the RUL. Our proposed approach has three unique features: (1) Defining the bearing failure threshold by adopting an International Organization of Standardization (ISO) standard, making the approach industry-relevant; (2) Employing a GAN-based data augmentation technique to improve the accuracy and robustness of RUL prediction in cases where the deep learning model has access to only a small amount of training data; (3) Integrating the training process of the LSTM predictor within the GAN architecture. A joint training approach is utilized to ensure that the LSTM predictor model learns both the original and artificially generated data to capture the degradation trajectories. We utilize a publicly available accelerated run-to-failure dataset of rolling element bearings to assess the performance of the proposed approach. Results of a five-fold cross-validation study show that the integration of the LSTM predictor with GAN helps to decrease the average RUL prediction error by 29% over a simple LSTM model without GAN implementation.
more »
« less
Data augmentation using a generative adversarial network for a high-precision instantaneous microwave frequency measurement system
In this Letter, an unsupervised-learning platform—generative adversarial network (GAN)—is proposed for experimental data augmentation in a deep-learning assisted photonic-based instantaneous microwave frequency measurement (IFM) system. Only 75 sets of experimental data are required and the GAN can augment the small amount of data into 5000 sets of data for training the deep learning model. Furthermore, frequency measurement error of the estimated frequency has improved by an order of magnitude from 50 MHz to 5 MHz. The proposed use of GAN effectively reduces the amount of experimental data needed by 98.75% and reduces measurement error by 10 times.
more »
« less
- Award ID(s):
- 1653525
- PAR ID:
- 10373008
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 47
- Issue:
- 20
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 5276
- Size(s):
- Article No. 5276
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a new dynamic reliability management (DRM) approach with deep reinforcement learning (DRL) for multi-core processors considering device reliability effects (hard error) and transient error of signal (soft error). The proposed method is based on a recently proposed physics-based three-phase electromigration model and an exponential soft error model that considers dynamic voltage and frequency scaling (DVFS) effects. Our work has been inspired by the recent advancements in DRL for various control and game applications. Compared with the traditional Q-learning based method, DRL has better scalability, lower memory and lower computational complexity. A large class of multi-threaded applications are used as the benchmark to validate and compare the proposed dynamic reliability management methods. Experimental results show that the proposed method can significantly reduces memory footprint and computational time compared to the traditional Q-learning based method. Furthermore, we show that the DRL-based DRM method can save 53.50% more energy than the Q-learning based method and 61.29% more than the simple DVFS based method.more » « less
-
This paper presents an improved on-state resistance (RDSon) measurement scheme for high and low-side GaN FETs, which is critical for reliable and precise assessment of GaN HEMT power devices’ lifetime and degradation patterns. The proposed circuit is based on an active voltage clamp using Si MOSFET and Schottky and Zener diodes. The proposed circuit features lower parasitic inductances and capacitances by replacing the Si MOSFET with e-mode GaN FET. This modification contributed to much lower ringing and spikes in the voltage and current waveform of both the measurement FET and the DUT. The absence of an embedded body diode in the GaN device in the measurement circuit allows zero reverse recovery operation, making it more viable in high-frequency power converters. This study also provides a detailed design analysis of a bootstrap GaN-based on-state voltage (VDSon) sensing scheme for high-side FETs, useful in multiple converter configurations for in-situ devices’ health monitoring and conditioning. Simulation and experimental results validate the performance and features of the proposed concepts.more » « less
-
Abstract MotivationThe human microbiome, which is linked to various diseases by growing evidence, has a profound impact on human health. Since changes in the composition of the microbiome across time are associated with disease and clinical outcomes, microbiome analysis should be performed in a longitudinal study. However, due to limited sample sizes and differing numbers of timepoints for different subjects, a significant amount of data cannot be utilized, directly affecting the quality of analysis results. Deep generative models have been proposed to address this lack of data issue. Specifically, a generative adversarial network (GAN) has been successfully utilized for data augmentation to improve prediction tasks. Recent studies have also shown improved performance of GAN-based models for missing value imputation in a multivariate time series dataset compared with traditional imputation methods. ResultsThis work proposes DeepMicroGen, a bidirectional recurrent neural network-based GAN model, trained on the temporal relationship between the observations, to impute the missing microbiome samples in longitudinal studies. DeepMicroGen outperforms standard baseline imputation methods, showing the lowest mean absolute error for both simulated and real datasets. Finally, the proposed model improved the predicted clinical outcome for allergies, by providing imputation for an incomplete longitudinal dataset used to train the classifier. Availability and implementationDeepMicroGen is publicly available at https://github.com/joungmin-choi/DeepMicroGen.more » « less
-
Deep neural networks have become increasingly popular in radar micro-Doppler classification; yet, a key challenge, which has limited potential gains, is the lack of large amounts of measured data that can facilitate the design of deeper networks with greater robustness and performance. Several approaches have been proposed in the literature to address this problem, such as unsupervised pre-training and transfer learning from optical imagery or synthetic RF data. This work investigates an alternative approach to training which involves exploitation of “datasets of opportunity” – micro-Doppler datasets collected using other RF sensors, which may be of a different frequency, bandwidth or waveform - for the purposes of training. Specifically, this work compares in detail the cross-frequency training degradation incurred for several different training approaches and deep neural network (DNN) architectures. Results show a 70% drop in classification accuracy when the RF sensors for pre-training, fine-tuning, and testing are different, and a 15% degradation when only the pre-training data is different, but the fine-tuning and test data are from the same sensor. By using generative adversarial networks (GANs), a large amount of synthetic data is generated for pre-training. Results show that cross-frequency performance degradation is reduced by 50% when kinematically-sifted GAN-synthesized signatures are used in pre-training.more » « less
An official website of the United States government
