Investigating how intrasexual competition and intersexual mate choice act within a system is crucial to understanding the maintenance and diversity of sexually-dimorphic traits. These two processes can act in concert by selecting for the same trait, or in opposition by selecting for different extremes of the same trait; they can also act on different traits, potentially increasing trait complexity. We asked whether male–male competition and female mate choice act on the same male traits using Trinidadian guppies, which exhibit sexual size dimorphism and male-limited color patterns consisting of different colors arranged along the body and fins. We used behavioral assays to assess the relationship between color and competitive success and then compared our results to the plethora of data on female choice and color in our study population. Males initiated more contests if they were larger than their competitor. Males won contests more often if they had more black coloration than their competitor, and the effect of black was stronger when males had less orange than their competitor. Additionally, males won more often if they had either more structural color (iridescence) and more orange, or less structural color and less orange than their competitor, suggesting multiple combinations of color more »
- Award ID(s):
- 1740466
- Publication Date:
- NSF-PAR ID:
- 10373067
- Journal Name:
- Behavioral Ecology
- Volume:
- 33
- Issue:
- 6
- Page Range or eLocation-ID:
- p. 1196-1206
- ISSN:
- 1045-2249
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Across taxa, sexually selected traits are more variable in the target sex than 1) the same trait in the opposite sex or 2) non-sexually selected traits, likely due to their condition-dependent expression. In humans, males show greater variability in certain cognitive abilities and brain structures that 1) may facilitate intra- or intersexual competition and 2) are greater/larger in males on average, suggesting these traits may also have been subject to sexual selection. This study investigates sex differences in brain structure variability in chimpanzees. Although male chimpanzees exhibit strong intrasexual competition, reproductive skew is reduced by female mate choice and male coercion. In vivo MRI scans were collected from 226 (135F/91M) individuals and surface areas were calculated for 25 cortical sulci. Outliers for each sex and sulcus were removed prior to analysis. We measured sex differences in variability by calculating the ratio of male-to-female standard deviations of MCMCglmm residuals, controlling for age, rearing condition, scanner type, and kinship. We tested for significant sex differences through permutation. We find that males are significantly more variable at the cingulate (ratio=1.18;p=0.043), middle-frontal (ratio=1.36;p=0.001), occipital-lateral (ratio=1.20;p=0.029), occipital- temporal-marginal (ratio=1.8;p=0.006), superior-temporal (ratio=1.36;p<0.001), subcentral-posterior (ratio=1.62;p=0.033), and superior-parietal (ratio=1.21;p=0.028) sulci. These regions are associated with social perception, facemore »
-
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »
-
Abstract How genetic variation is maintained in ecologically important traits is a central question in evolutionary biology. Male Trinidadian guppies, Poecilia reticulata, exhibit high genetic diversity in color patterns within populations, and field and laboratory studies implicate negative frequency-dependent selection in maintaining this variation. However, behavioral and ecological processes that mediate this selection in natural populations are poorly understood. We evaluated female mate preference in 11 natural guppy populations, including paired populations from high- and low-predation habitats, to determine if this behavior is responsible for negative frequency-dependent selection and to evaluate its prevalence in nature. Females directed significantly more attention to males with rare and unfamiliar color patterns than to males with common patterns. Female attention also increased with the area of male orange coloration, but this preference was independent of the preference for rare and unfamiliar patterns. We also found an overall effect of predation regime; females from high-predation populations directed more attention toward males than those from low-predation populations. Again, however, the habitat-linked preference was statistically independent from the preference for rare and unfamiliar patterns. Because previous research indicates that female attention to males predicts male mating success, we conclude that the prevalence of female preference for malesmore »
-
Lutermann, Heike (Ed.)The unusual blue color polymorphism of lingcod ( Ophiodon elongatus ) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host–parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why bluenessmore »
-
Abstract Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromaticmore »