skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Advanced apparatus for the integration of nanophotonics and cold atoms

We combine nanophotonics and cold atom research in a new apparatus enabling the delivery of single-atom tweezer arrays in the vicinity of photonic crystal waveguides.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Page Range / eLocation ID:
Article No. 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their usability. In this work, we develop ATOMRefine, a deep learning-based, end-to-end, all-atom protein structural model refinement method. It uses a SE(3)-equivariant graph transformer network to directly refine protein atomic coordinates in a predicted tertiary structure represented as a molecular graph.


    The method is first trained and tested on the structural models in AlphaFoldDB whose experimental structures are known, and then blindly tested on 69 CASP14 regular targets and 7 CASP14 refinement targets. ATOMRefine improves the quality of both backbone atoms and all-atom conformation of the initial structural models generated by AlphaFold. It also performs better than two state-of-the-art refinement methods in multiple evaluation metrics including an all-atom model quality score—the MolProbity score based on the analysis of all-atom contacts, bond length, atom clashes, torsion angles, and side-chain rotamers. As ATOMRefine can refine a protein structure quickly, it provides a viable, fast solution for improving protein geometry and fixing structural errors of predicted structures through direct coordinate refinement.

    Availability and implementation

    The source code of ATOMRefine is available in the GitHub repository ( All the required data for training and testing are available at

    more » « less
  2. Abstract

    Examination of the reactions of σ‐type quinolinium‐based triradicals with cyclohexane in the gas phase demonstrated that the radical site that is the least strongly coupled to the other two radical sites reacts first, independent of the intrinsic reactivity of this radical site, in contrast to related biradicals that first react at the most electron‐deficient radical site. Abstraction of one or two H atoms and formation of an ion that formally corresponds to a combination of the ion and cyclohexane accompanied by elimination of a H atom (“addition‐H”) were observed. In all cases except one, the most reactive radical site of the triradicals is intrinsically less reactive than the other two radical sites. The product complex of the first H atom abstraction either dissociates to give the H‐atom‐abstraction product and the cyclohexyl radical or the more reactive radical site in the produced biradical abstracts a H atom from the cyclohexyl radical. The monoradical product sometimes adds to cyclohexene followed by elimination of a H atom, generating the “addition‐H” products. Similar reaction efficiencies were measured for three of the triradicals as for relevant monoradicals. Surprisingly, the remaining three triradicals (all containing ameta‐pyridyne moiety) reacted substantially faster than the relevant monoradicals. This is likely due to the exothermic generation of ameta‐pyridyne analog that has enough energy to attain the dehydrocarbon atom separation common for H‐atom‐abstraction transition states of protonatedmeta‐pyridynes.

    more » « less
  3. Abstract. Highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis have been shown to be significant contributors to secondary organic aerosol (SOA), yet our mechanistic understanding of how the peroxy-radical-driven autoxidation leads to their formation in this system is still limited. The involved isomerisation reactions such as H-atom abstractions followed by O2 additions can take place on sub-second timescales in short-lived intermediates, making the process challenging to study. Similarly, while the end-products and sometimes radical intermediates can be observed using mass spectrometry, their structures remain elusive. Therefore, we propose a method utilising selective deuterations for unveiling the mechanisms of autoxidation, where the HOM products can be used to infer which C atoms have taken part in the isomerisation reactions. This relies on the fact that if a C−D bond is broken due to an abstraction by a peroxy group forming a −OOD hydroperoxide, the D atom will become labile and able to be exchanged with a hydrogen atom in water vapour (H2O), effectively leading to loss of the D atom from the molecule. In this study, we test the applicability of this method using three differently deuterated versions of α-pinene with the newly developed chemical ionisation Orbitrap (CI-Orbitrap) mass spectrometer to inspect the oxidation products. The high mass-resolving power of the Orbitrap is critical, as it allows the unambiguous separation of molecules with a D atom (mD=2.0141) from those with two H atoms (mH2=2.0157). We found that the method worked well, and we could deduce that two of the three tested compounds had lost D atoms during oxidation, suggesting that those deuterated positions were actively involved in the autoxidation process. Surprisingly, the deuterations were not observed to decrease HOM molar yields, as would have been expected due to kinetic isotope effects. This may be an indication that the relevant H (or D) abstractions were fast enough that no competing pathways were of relevance despite slower abstraction rates of the D atom. We show that selective deuteration can be a very useful method for studying autoxidation on a molecular level and likely is not limited to the system of α-pinene ozonolysis tested here.

    more » « less
  4. Abstract

    We investigate and assess how well a global chemical transport model (GEOS‐Chem) simulates submicron aerosol mass concentrations in the remote troposphere. The simulated speciated aerosol (organic aerosol (OA), black carbon, sulfate, nitrate, and ammonium) mass concentrations are evaluated against airborne observations made during all four seasons of the NASA Atmospheric Tomography Mission (ATom) deployments over the remote Pacific and Atlantic Oceans. Such measurements over pristine environments offer fresh insights into the spatial (Northern [NH] and Southern Hemispheres [SH], Atlantic, and Pacific Oceans) and temporal (all seasons) variability in aerosol composition and lifetime, away from continental sources. The model captures the dominance of fine OA and sulfate aerosol mass concentrations in all seasons. There is a high bias across all species in the ATom‐2 (NH winter) simulations; implementing recent updates to the wet scavenging parameterization improves our simulations, eliminating the large ATom‐2 (NH winter) bias, improving the ATom‐1 (NH summer) and ATom‐3 (NH fall) simulations, but producing a model underestimate in aerosol mass concentrations for the ATom‐4 (NH spring) simulations. Following the wet scavenging updates, simulated global annual mean aerosol lifetimes vary from 1.9 to 4.0 days, depending on species. Aerosol lifetimes in each hemisphere vary by season, and are longest for carbonaceous aerosol during the southern hemispheric fire season. The updated wet scavenging parameterization brings simulated concentrations closer to observations and reduces global aerosol lifetime for all species, indicating the sensitivity of global aerosol lifetime and burden to wet removal processes.

    more » « less
  5. The electronic structures of three highly mismatched alloys (HMAs)—GeC(Sn), Ga(In)NAs, and BGa(In)As—were studied using density functional theory with HSE06 hybrid functionals, with an emphasis on the local environment near the mismatched, highly electronegative atom (B, C, and N). These alloys are known for their counterintuitive reduction in the bandgap when adding the smaller atom, due to a band anticrossing (BAC) or splitting of the conduction band. Surprisingly, the existence of band splitting was found to be completely unrelated to the local displacement of the lattice ions near the mismatched atom. Furthermore, in BGaAs, the reduction in the bandgap due to BAC was weaker than the increase due to the lattice constant, which has not been observed among other HMAs but may explain differences among experimental reports. While local distortion in GeC and GaNAs was not the cause for BAC, it was found to enhance the bandgap reduction due to BAC. This work also found that mere contrast in electronegativity between neighboring atoms does not induce BAC. In fact, surrounding the electronegative atom with elements of even smaller electronegativity than the host (e.g., Sn or In) consistently decreased or even eliminated BAC. For a fixed composition, moving Sn toward C and In toward either N or B was always energetically favorable and increased the bandgap, consistent with experimental annealing results. Such rearrangement also delocalized the conduction band wavefunctions near the mismatched atom to resemble the original host states in unperturbed Ge or GaAs, causing the BAC to progressively weaken. These collective results were consistent whether the mismatched atom was a cation (N), anion (B), or fully covalent (C), varying only with the magnitude of its electronegativity, with B having the least effect. The effects can be explained by charge screening of the mismatched atom's deep electrostatic potential. Together, these results help explain differences in the bandgap and other properties reported for HMAs from different groups and provide insight into the creation of materials with designer properties.

    more » « less