skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clumped‐Isotope Constraint on Upper‐Tropospheric Cooling During the Last Glacial Maximum
Abstract Ice cores and other paleotemperature proxies, together with general circulation models, have provided information on past surface temperatures and the atmosphere's composition in different climates. Little is known, however, about past temperatures at high altitudes, which play a crucial role in Earth's radiative energy budget. Paleoclimate records at high‐altitude sites are sparse, and the few that are available show poor agreement with climate model predictions. These disagreements could be due to insufficient spatial coverage, spatiotemporal biases, or model physics; new records that can mitigate or avoid these uncertainties are needed. Here, we constrain the change in upper‐tropospheric temperature at the global scale during the Last Glacial Maximum (LGM) using the clumped‐isotope composition of molecular oxygen trapped in polar ice cores. Aided by global three‐dimensional chemical transport modeling, we exploit the intrinsic temperature sensitivity of the clumped‐isotope composition of atmospheric oxygen to infer that the upper troposphere (effective mean altitude 10–11 km) was 6–9°C cooler during the LGM than during the late preindustrial Holocene. A complementary energy balance approach supports a minor or negligible steepening of atmospheric lapse rates during the LGM, which is consistent with a range of climate model simulations. Proxy‐model disagreements with other high‐altitude records may stem from inaccuracies in regional hydroclimate simulation, possibly related to land‐atmosphere feedbacks.  more » « less
Award ID(s):
2002414 2002422
PAR ID:
10373149
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
3
Issue:
4
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since the last glacial period, North America has experienced dramatic changes in regional climate, including the collapse of ice sheets and changes in precipitation. We use clumped isotope (∆47) thermometry and carbonate δ18O measurements of glacial and deglacial pedogenic carbonates from the Palouse Loess to provide constraints on hydroclimate changes in the Pacific Northwest. We also employ analysis of climate model simulations to help us further provide constraints on the hydroclimate changes in the Pacific Northwest. The coldest clumped isotope soil temperaturesT(47) (13.5 ± 1.9°C to 17.1 ± 1.7°C) occurred ∼34,000–23,000 years ago. Using a soil‐to‐air temperature transfer function, we estimate Last Glacial Maximum (LGM) mean annual air temperatures of ∼−5.5°C and warmest average monthly temperatures (i.e., mean summer air temperatures) of ∼4.4°C. These data indicate a regional warming of 16.4 ± 2.6°C from the LGM to the modern temperatures of 10.9°C, which was about 2.5–3 times the global average. Proxy data provide locality constraints on the boundary of the cooler anticyclone induced by LGM ice sheets, and the warmer cyclone in the Eastern Pacific Ocean. Climate model analysis suggests regional amplification of temperature anomalies is due to the proximal location of the study area to the Laurentide Ice Sheet margin and the impact of the glacial anticyclone on the region, as well as local albedo. Isotope‐enabled model experiments indicate variations in water δ18O largely reflect atmospheric circulation changes and enhanced rainout upstream that brings more depleted vapor to the region during the LGM. 
    more » « less
  2. null (Ed.)
    Alpine glaciers in the low- and mid-latitudes respond more quickly than large polar ice sheets to changes in temperature, precipitation, cloudiness, humidity, and radiation. Many high-altitude glaciers are monitored by ground observations, aerial photography, and satellite-borne sensors. Regardless of latitude and elevation, nearly all nonpolar glaciers and ice caps are undergoing mass loss, which compromises the records of past climate preserved within them. Almost without exception, the retreat of these ice fields is persistent, and a very important driver is the recent warming of the tropical troposphere and oceans. Here we present data on the decrease in the surface area of four glaciers from low- to mid-latitude mountainous regions: the Andes of Peru and northern Bolivia, equatorial east Africa, equatorial Papua, Indonesia, and the western Tibetan Plateau. Climate records based on oxygen isotopic ratios (δ18O) measured in ice cores drilled from several glaciers in these regions reveal that the records from elevations below ~6000 m above sea level have been substantially modified by seasonal melting and the movement of meltwater through porous upper firn layers. Fortunately, δ18O records recovered from higher altitude sites still contain well-preserved seasonal variations to the surface; however, the projected increase in the rate of atmospheric warming implies that climate records from higher elevation glaciers will eventually also be degraded. A long-term ice core collection program on the Quelccaya ice cap in Peru, Earth’s largest tropical ice cap, illustrates that the deterioration of its climate record is concomitant with the increase in mid-troposphere temperatures. The melting ice and resulting growth of proglacial lakes presents an imminent hazard to nearby communities. The accelerating melting of glaciers, if sustained, ensures the eventual loss of unique and irreplaceable climate histories, as well as profound economic, agricultural, and cultural impacts on local communities. 
    more » « less
  3. null (Ed.)
    Alpine glaciers in the low- and mid-latitudes respond more quickly than large polar ice sheets to changes in temperature, precipitation, cloudiness, humidity, and radiation. Many high-altitude glaciers are monitored by ground observations, aerial photography, and satellite-borne sensors. Regardless of latitude and elevation, nearly all nonpolar glaciers and ice caps are undergoing mass loss, which compromises the records of past climate preserved within them. Almost without exception, the retreat of these ice fields is persistent, and a very important driver is the recent warming of the tropical troposphere and oceans. Here we present data on the decrease in the surface area of four glaciers from low- to mid-latitude mountainous regions: the Andes of Peru and northern Bolivia, equatorial east Africa, equatorial Papua, Indonesia, and the western Tibetan Plateau. Climate records based on oxygen isotopic ratios (δ18O) measured in ice cores drilled from several glaciers in these regions reveal that the records from elevations below ~6000 m above sea level have been substantially modified by seasonal melting and the movement of meltwater through porous upper firn layers. Fortunately, δ18O records recovered from higher altitude sites still contain well-preserved seasonal variations to the surface; however, the projected increase in the rate of atmospheric warming implies that climate records from higher elevation glaciers will eventually also be degraded. A long-term ice core collection program on the Quelccaya ice cap in Peru, Earth’s largest tropical ice cap, illustrates that the deterioration of its climate record is concomitant with the increase in mid-troposphere temperatures. The melting ice and resulting growth of proglacial lakes presents an imminent hazard to nearby communities. The accelerating melting of glaciers, if sustained, ensures the eventual loss of unique and irreplaceable climate histories, as well as profound economic, agricultural, and cultural impacts on local communities. 
    more » « less
  4. Abstract Global climate during the Holocene was relatively stable compared to the late Pleistocene. However, evidence from lacustrine records in South America suggests that tropical latitudes experienced significant water balance variability during the Holocene, rather than quiescence. For example, a tight coupling between insolation and carbonate δ18O records from central Andean lakes (e.g., Lakes Junín, Pumacocha) suggest water balance is tied directly to South American summer monsoon (SASM) strength. However, lake carbonate δ18O records also incorporate information about temperature and evaporation. To overcome this ambiguity, clumped and triple oxygen isotope records can provide independent constraints on temperature and evaporation. Here, we use clumped and triple oxygen isotopes to develop Holocene temperature and evaporation records from three central Andean lakes, Lakes Junín, Pumacocha, and Mehcocha, to build a more complete picture of regional water balance (P–E). We find that Holocene water temperatures at all three lakes were stable and slightly warmer than during the latest Pleistocene. These results are consistent with global data assimilations and records from the foothills and Amazon basin. In contrast, evaporation was highly variable and tracks SASM intensity. The hydrologic response of each lake to SASM depends greatly on the physical characteristics of the lake basin, but they all record peak evaporation in the early to mid‐Holocene (11,700 to 4,200 years BP) when regional insolation was relatively low and the SASM was weak. These results corroborate other central Andean records and suggest synchronous, widespread water stress tracks insolation‐paced variability in SASM strength. 
    more » « less
  5. Abstract The magnitude of tropical cooling during the Last Glacial Maximum (LGM; ∼19–26.5 ka) remains controversial, with sea‐surface temperatures cooling by several degrees less than most temperatures reconstructed at high elevations. To explain this discrepancy, past studies proposed a steeper (increased) lapse rate—the temperature decrease with elevation—during the LGM relative to today. For instance, LGM temperatures in East Africa reconstructed from branched GDGTs from multiple elevations support an ∼0.9°C/km increase in the lapse rate during the LGM relative to present day. Lapse rates are a critical part of the Earth's climate sensitivity and atmospheric energy transfer, and it is vital to know whether and by how much the tropical lapse rate steepened during the LGM. Here, we simulate LGM glacier extents in the Rwenzori Mountains of Uganda with and without a change in lapse rate using a range of temperature and precipitation estimates. We find that the lapse rate must have been steeper than present for glaciers to reach their LGM positions using available sea‐level temperature and precipitation estimates for East Africa. 
    more » « less