skip to main content


Title: Multiscale profiling of protease activity in cancer
Abstract

Diverse processes in cancer are mediated by enzymes, which most proximally exert their function through their activity. High-fidelity methods to profile enzyme activity are therefore critical to understanding and targeting the pathological roles of enzymes in cancer. Here, we present an integrated set of methods for measuring specific protease activities across scales, and deploy these methods to study treatment response in an autochthonous model ofAlk-mutant lung cancer. We leverage multiplexed nanosensors and machine learning to analyze in vivo protease activity dynamics in lung cancer, identifying significant dysregulation that includes enhanced cleavage of a peptide, S1, which rapidly returns to healthy levels with targeted therapy. Through direct on-tissue localization of protease activity, we pinpoint S1 cleavage to the tumor vasculature. To link protease activity to cellular function, we design a high-throughput method to isolate and characterize proteolytically active cells, uncovering a pro-angiogenic phenotype in S1-cleaving cells. These methods provide a framework for functional, multiscale characterization of protease dysregulation in cancer.

 
more » « less
NSF-PAR ID:
10373182
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay. 
    more » « less
  2. Abstract

    Immune checkpoint inhibitors that bind to the cell surface receptor PD‐L1 are effective anti‐cancer agents but suffer from immune‐related adverse events as PD‐L1 is expressed on both healthy and cancer cells. To mitigate toxicity, researchers are testing prodrugs that have low affinity for checkpoint targets until activated with proteases enriched in the tumor microenvironment. Here, we engineer a prodrug form of a PD‐L1 inhibitor. The inhibitor is a soluble PD‐1 mimetic that was previously engineered to have high affinity for PD‐L1. In the basal state, the binding surface of the PD‐1 mimetic is masked by fusing it to a soluble variant of its natural ligand, PD‐L1. Proteolytic cleavage of the linker that connects the mask to the inhibitor activates the molecule. To optimize the mask so that it effectively blocks binding to PD‐L1 but releases upon cleavage, we tested a set of mutants with varied affinity for the inhibitor. The top‐performing mask reduces the affinity of the prodrug for PD‐L1 120‐fold, and binding is nearly fully recovered upon cleavage. In a cell‐based assay measuring inhibition of the PD‐1:PD‐L1 interaction on the surface of cells, the IC50s of the masked inhibitors were up to 40‐fold higher than their protease‐treated counterparts. The changes in activity we observe upon protease treatment are comparable to systems currently tested in the clinic and provide evidence that natural binding partners are an excellent starting point for creating a prodrug.

     
    more » « less
  3. Abstract

    Playing pivotal roles in tumor growth and metastasis, matrix metalloproteinase‐14 (MMP‐14) is an important cancer target. Potent inhibitory Fab 3A2 with therapy‐desired high selectivity has been isolated from a synthetic antibody library carrying long CDR‐H3s. However, like many standard mechanism protease inhibitors, Fab 3A2 can be cleaved by high concentrations of MMP‐14 after extended incubation at acidic pH. Edman sequencing of generated 3A2 fragments indicated that cleavage occurred within its CDR‐H3 between residues N100h (P1) and L100i (P1’). To improve proteolytic stability of 3A2, three positions adjacent to its cleavage site (P1, P1’, and P3’) were subjected to site‐saturation mutagenesis (SSM). Mutations at P1’ (L100i) resulted in loss of inhibition function, while screening of 3A2 Fab mutants at P1 (N100h) or P3’ (A100k) positions identified four clones exhibiting improvements in both stability and inhibition potency. The majority of these mutants with improved stability were substitutions to either hydrophobic (Lue, Trp) or basic residues (Arg, Lys, His). Combinations of these beneficial mutations resulted in a double mutant N100hR/A100kR, which prolonged half‐life twofold with an inhibition potencyKIof 6.6 nM. Enzyme kinetics and competitive ELISA suggested that N100hR/A100kR was a competitive inhibitor overlapping its binding epitope with that of nTIMP‐2. This study demonstrated that site‐directed mutagenesis at or near the cleavage position reduced proteolytic liability of standard mechanism protease inhibitors especially inhibitory antibodies.

     
    more » « less
  4. Abstract

    SARS‐CoV‐2 is the coronavirus responsible for the COVID‐19 pandemic. Proteases are central to the infection process of SARS‐CoV‐2. Cleavage of the spike protein on the virus's capsid causes the conformational change that leads to membrane fusion and viral entry into the target cell. Since inhibition of one protease, even the dominant protease like TMPRSS2, may not be sufficient to block SARS‐CoV‐2 entry into cells, other proteases that may play an activating role and hydrolyze the spike protein must be identified. We identified amino acid sequences in all regions of spike protein, including the S1/S2 region critical for activation and viral entry, that are susceptible to cleavage by furin and cathepsins B, K, L, S, and V using PACMANS, a computational platform that identifies and ranks preferred sites of proteolytic cleavage on substrates, and verified with molecular docking analysis and immunoblotting to determine if binding of these proteases can occur on the spike protein that were identified as possible cleavage sites. Together, this study highlights cathepsins B, K, L, S, and V for consideration in SARS‐CoV‐2 infection and presents methodologies by which other proteases can be screened to determine a role in viral entry. This highlights additional proteases to be considered in COVID‐19 studies, particularly regarding exacerbated damage in inflammatory preconditions where these proteases are generally upregulated.

     
    more » « less
  5. Abstract Motivation

    Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in the ‘life and death’ cellular processes, many of the corresponding substrates and their cleavage sites were not found yet. Availability of accurate predictors of the substrates and cleavage sites would facilitate understanding of proteases’ functions and physiological roles. Deep learning is a promising approach for the development of accurate predictors of substrate cleavage events.

    Results

    We propose DeepCleave, the first deep learning-based predictor of protease-specific substrates and cleavage sites. DeepCleave uses protein substrate sequence data as input and employs convolutional neural networks with transfer learning to train accurate predictive models. High predictive performance of our models stems from the use of high-quality cleavage site features extracted from the substrate sequences through the deep learning process, and the application of transfer learning, multiple kernels and attention layer in the design of the deep network. Empirical tests against several related state-of-the-art methods demonstrate that DeepCleave outperforms these methods in predicting caspase and matrix metalloprotease substrate-cleavage sites.

    Availability and implementation

    The DeepCleave webserver and source code are freely available at http://deepcleave.erc.monash.edu/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less