skip to main content

Title: Centrifugal barrier and super-Keplerian rotation in protostellar disc formation

With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. In particular, the recent ALMA C3H2 line observations of the nearby protostar L1527 have been interpreted as evidence for the so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by our simulations.

more » « less
Award ID(s):
1716259 1910106
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 213-221
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

    more » « less
  2. Context. In the past few years, there has been a rise in the detection of streamers, asymmetric flows of material directed toward the protostellar disk with material from outside a star’s natal core. It is unclear how they affect the process of mass accretion, in particular beyond the Class 0 phase. Aims. We investigate the gas kinematics around Per-emb-50, a Class I source in the crowded star-forming region NGC 1333. Our goal is to study how the mass infall proceeds from envelope to disk scales in this source. Methods. We use new NOEMA 1.3 mm observations, including C 18 O, H 2 CO, and SO, in the context of the PRODIGE MPG – IRAM program, to probe the core and envelope structures toward Per-emb-50. Results. We discover a streamer delivering material toward Per-emb-50 in H 2 CO and C 18 O emission. The streamer’s emission can be well described by the analytic solutions for an infalling parcel of gas along a streamline with conserved angular momentum, both in the image plane and along the line-of-sight velocities. The streamer has a mean infall rate of 1.3 × 10 −6 M ⊙ yr− 1 , five to ten times higher than the current accretion rate of the protostar. SO and SO 2 emission reveal asymmetric infall motions in the inner envelope, additional to the streamer around Per-emb-50. Furthermore, the presence of SO 2 could mark the impact zone of the infalling material. Conclusions. The streamer delivers sufficient mass to sustain the protostellar accretion rate and might produce an accretion burst, which would explain the protostar’s high luminosity with respect to other Class I sources. Our results highlight the importance of late infall for protostellar evolution: streamers might provide a significant amount of mass for stellar accretion after the Class 0 phase. 
    more » « less
  3. ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra. 
    more » « less
  4. null (Ed.)
    ABSTRACT Non-ideal magnetohydrodynamic (MHD) effects have been shown recently as a robust mechanism of averting the magnetic braking ‘catastrophe’ and promoting protostellar disc formation. However, the magnetic diffusivities that determine the efficiency of non-ideal MHD effects are highly sensitive to microphysics. We carry out non-ideal MHD simulations to explore the role of microphysics on disc formation and the interplay between ambipolar diffusion (AD) and Hall effect during the protostellar collapse. We find that removing the smallest grain population (≲10 nm) from the standard MRN size distribution is sufficient for enabling disc formation. Further varying the grain sizes can result in either a Hall-dominated or an AD-dominated collapse; both form discs of tens of au in size regardless of the magnetic field polarity. The direction of disc rotation is bimodal in the Hall-dominated collapse but unimodal in the AD-dominated collapse. We also find that AD and Hall effect can operate either with or against each other in both radial and azimuthal directions, yet the combined effect of AD and Hall is to move the magnetic field radially outward relative to the infalling envelope matter. In addition, microphysics and magnetic field polarity can leave profound imprints both on observables (e.g. outflow morphology, disc to stellar mass ratio) and on the magnetic field characteristics of protoplanetary discs. Including Hall effect relaxes the requirements on microphysics for disc formation, so that prestellar cores with cosmic ray ionization rate of ≲2–3 × 10−16 s−1 can still form small discs of ≲10 au radius. We conclude that disc formation should be relatively common for typical prestellar core conditions, and that microphysics in the protostellar envelope is essential to not only disc formation, but also protoplanetary disc evolution. 
    more » « less
  5. Aims. We present high-sensitivity and high spectral-resolution NOEMA observations of the Class 0/I binary system SVS13A, composed of the low-mass protostars VLA4A and VLA4B, with a separation of ~90 au. VLA4A is undergoing an accretion burst that is enriching the chemistry of the surrounding gas, which provides an excellent opportunity to probe the chemical and physical conditions as well as the accretion process. Methods. We observe the (12 K –11 K ) lines of CH 3 CN and CH 3 13 CN, the DCN (3–2) line, and the C 18 O (2–1) line toward SVS13A using NOEMA. Results. We find complex line profiles at disk scales that cannot be explained by a single component or pure Keplerian motion. By adopting two velocity components to model the complex line profiles, we find that the temperatures and densities are significantly different among these two components. This suggests that the physical conditions of the emitting gas traced via CH 3 CN can change dramatically within the circumbinary disk. In addition, combining our observations of DCN (3–2) with previous ALMA observations at high angular resolution, we find that the binary system (or VLA4A) might be fed by an infalling streamer from envelope scales (~700 au). If this is the case, this streamer contributes to the accretion of material onto the system at a rate of at least 1.4 × 10 −6 M ⊙ yr −1 . Conclusions. We conclude that the CH 3 CN emission in SVS13A traces hot gas from a complex structure. This complexity might be affected by a streamer that is possibly infalling and funneling material into the central region. 
    more » « less