Abstract Precise estimates of protostellar masses are crucial to characterize the formation of stars of low masses down to brown dwarfs (BDs;M*< 0.08M☉). The most accurate estimation of protostellar mass uses the Keplerian rotation in the circumstellar disk around the protostar. To apply the Keplerian rotation method to a protostar at the low-mass end, we have observed the Class 0 protostar IRAS 16253-2429 using the Atacama Large Millimeter/submillimeter Array (ALMA) in the 1.3 mm continuum at an angular resolution of 0.″07 (10 au), and in the12CO, C18O,13CO (J= 2–1), and SO (JN= 65−54) molecular lines, as part of the ALMA Large Program Early Planet Formation in Embedded Disks project. The continuum emission traces a nonaxisymmetric, disk-like structure perpendicular to the associated12CO outflow. The position–velocity (PV) diagrams in the C18O and13CO lines can be interpreted as infalling and rotating motions. In contrast, the PV diagram along the major axis of the disk-like structure in the12CO line allows us to identify Keplerian rotation. The central stellar mass and the disk radius are estimated to be ∼0.12–0.17M☉and ∼13–19 au, respectively. The SO line suggests the existence of an accretion shock at a ring (r∼ 28 au) surrounding the disk and a streamer from the eastern side of the envelope. IRAS 16253-2429 is not a proto-BD but has a central stellar mass close to the BD mass regime, and our results provide a typical picture of such very-low-mass protostars.
more »
« less
Centrifugal barrier and super-Keplerian rotation in protostellar disc formation
ABSTRACT With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. In particular, the recent ALMA C3H2 line observations of the nearby protostar L1527 have been interpreted as evidence for the so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by our simulations.
more »
« less
- PAR ID:
- 10373197
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 517
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 213-221
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.more » « less
-
Context. In the past few years, there has been a rise in the detection of streamers, asymmetric flows of material directed toward the protostellar disk with material from outside a star’s natal core. It is unclear how they affect the process of mass accretion, in particular beyond the Class 0 phase. Aims. We investigate the gas kinematics around Per-emb-50, a Class I source in the crowded star-forming region NGC 1333. Our goal is to study how the mass infall proceeds from envelope to disk scales in this source. Methods. We use new NOEMA 1.3 mm observations, including C 18 O, H 2 CO, and SO, in the context of the PRODIGE MPG – IRAM program, to probe the core and envelope structures toward Per-emb-50. Results. We discover a streamer delivering material toward Per-emb-50 in H 2 CO and C 18 O emission. The streamer’s emission can be well described by the analytic solutions for an infalling parcel of gas along a streamline with conserved angular momentum, both in the image plane and along the line-of-sight velocities. The streamer has a mean infall rate of 1.3 × 10 −6 M ⊙ yr− 1 , five to ten times higher than the current accretion rate of the protostar. SO and SO 2 emission reveal asymmetric infall motions in the inner envelope, additional to the streamer around Per-emb-50. Furthermore, the presence of SO 2 could mark the impact zone of the infalling material. Conclusions. The streamer delivers sufficient mass to sustain the protostellar accretion rate and might produce an accretion burst, which would explain the protostar’s high luminosity with respect to other Class I sources. Our results highlight the importance of late infall for protostellar evolution: streamers might provide a significant amount of mass for stellar accretion after the Class 0 phase.more » « less
-
ABSTRACT The majority of stars are in binary/multiple systems. How such systems form in turbulent, magnetized cores of molecular clouds in the presence of non-ideal magnetohydrodynamic (MHD) effects remains relatively underexplored. Through athena++-based non-ideal MHD adaptive mesh refinement simulations with ambipolar diffusion, we show that the collapsing protostellar envelope is dominated by dense gravo-magneto-sheetlets, a turbulence-warped version of the classic pseudodisc produced by anisotropic magnetic resistance to the gravitational collapse, in agreement with previous simulations of turbulent, magnetized single-star formation. The sheetlets feed mass, magnetic fields, and angular momentum to a Dense ROtation-Dominated (DROD) structure, which fragments into binary/multiple systems. This DROD fragmentation scenario is a more dynamic variant of the traditional disc fragmentation scenario for binary/multiple formation, with dense spiral filaments created by inhomogeneous feeding from the highly structured larger-scale sheetlets rather than the need for angular momentum transport, which is dominated by magnetic braking. Provided that the local material is sufficiently demagnetized, with a plasma-$$\beta$$ of 10 or more, collisions between the dense spiralling filaments play a key role in facilitating gravitational collapse and stellar companion formation by pushing the local magnetic Toomre parameter $$Q_\mathrm{m}$$ below unity. This mechanism can naturally produce in situ misaligned systems on the 100-au scale, often detected with high-resolution Atacama Large Millimeter Array (ALMA) observations. Our simulations also highlight the importance of non-ideal MHD effects, which affect whether fragmentation occurs and, if so, the masses and orbital parameters of the stellar companions formed.more » « less
-
ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.more » « less
An official website of the United States government
