skip to main content


Title: Injectable Nanoparticle‐Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies
Abstract

When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long‐lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow‐releasing injectable hydrogel depot to reduce dose‐limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer‐nanoparticle (PNP) hydrogel system is leveraged that exhibits shear‐thinning and yield‐stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel‐based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a‐loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug‐agnostic method to ameliorate immune‐related adverse effects and explore locoregional delivery of immunostimulatory drugs.

 
more » « less
NSF-PAR ID:
10373207
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
28
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow‐delivery influenza vaccine platform. We utilized an injectable and self‐healing polymer‐nanoparticle (PNP) hydrogel platform to prolong the co‐delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll‐like receptor 7/8 agonist adjuvant could be co‐delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel‐based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.

     
    more » « less
  2. Abstract

    Anticancer vaccines train the body's own immune system to recognize and eliminate malignant cells based on differential antigen expression. While conceptually attractive, clinical efficacy is lacking given several key challenges stemming from the similarities between cancerous and healthy tissue. Ideally, an effective vaccine formulation would deliver multiple tumor antigens in a fashion that potently stimulates endogenous immune responses against those antigens. Here, it is reported on the fabrication of a biomimetic, nanoparticulate anticancer vaccine that is capable of delivering autologously derived tumor antigen material together with a highly immunostimulatory adjuvant. The two major components, tumor antigens and adjuvant, are presented concurrently in a fashion that maximizes their ability to promote effective antigen presentation and activation of downstream immune processes. Ultimately, it is demonstrated that the formulation can elicit potent antitumor immune responses in vivo. When combined with additional immunotherapies such as checkpoint blockades, the nanovaccine demonstrates substantial therapeutic effect. Overall, the work represents the rational application of nanotechnology for immunoengineering and can provide a blueprint for the future development of personalized, autologous anticancer vaccines with broad applicability.

     
    more » « less
  3. Abstract

    The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID‐19. The receptor‐binding domain (RBD) of the SARS‐CoV‐2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically‐relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime‐boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer‐nanoparticle (PNP) hydrogel elicited potent anti‐RBD and anti‐spike antibody titers, providing broader protection against SARS‐CoV‐2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically‐relevant adjuvant systems. Notably, a SARS‐CoV‐2 spike‐pseudotyped lentivirus neutralization assay revealed that hydrogel‐based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

     
    more » « less
  4. Abstract

    Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA‐approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)‐based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization. Our hydrogel solutions polymerize in situ in a temperature‐sensitive manner, persist in tissue, and facilitate the delivery of bioactive therapeutics in subsurface locations. Demonstrating the efficacy of our approach, recombinant anti‐CD47 monoclonal antibodies, when incorporated into subsurface‐injected hydrogel solutions, exhibited cytotoxic activity against infiltrative high‐grade glioma xenografts in the rodent brain. To enhance the gel's versatility, recombinant protein cargos can undergo site‐specific modification with hydrolysable “azidoester” adapters, allowing for user‐defined release profiles from the hydrogel. Hydrogel‐generated gradients of murine CXCL10, linked to intratumorally injected hydrogel solutions via azidoester linkers, resulted in significant recruitment of CD8+T‐cells and the attenuation of tumor growth in a “cold” syngeneic melanoma model. This study highlights a highly customizable, hydrogel‐based delivery system for local protein therapeutic administration to meet diverse clinical needs.

     
    more » « less
  5. Abstract

    Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer‐by‐layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin‐12 (IL‐12) therapy upon intratumoral injection. However, ovarian cancer cannot be treated by local injection as it presents as dispersed metastases. Herein, we demonstrate the use of systemically delivered LbL NPs using a cancer cell membrane‐binding outer layer to effectively target and engage the adaptive immune system as a treatment in multiple orthotopic ovarian tumor models, including immunologically cold tumors. IL‐12 therapy from systemically delivered LbL NPs shows reduced severe toxicity and maintained anti‐tumor efficacy compared to carrier‐free IL‐12 or layer‐free liposomal NPs leading to a 30% complete survival rate.

     
    more » « less