skip to main content


Title: Orbital Dynamics Landscape near the Most Distant Known Trans-Neptunian Objects
Abstract

The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets.

 
more » « less
Award ID(s):
1824869
NSF-PAR ID:
10373265
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
937
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 119
Size(s):
["Article No. 119"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent observational surveys of the outer solar system provide evidence that Neptune's distantn:1 mean motion resonances may harbor relatively large reservoirs of trans-Neptunian objects (TNOs). In particular, the discovery of two securely classified 9:1 resonators, 2015 KE172and 2007 TC434, by the Outer Solar System Origins Survey is consistent with a population of order 104such objects in the 9:1 resonance with absolute magnitudeHr< 8.66. This work investigates whether the long-term stability of such populations in Neptune’sn:1 resonances can be used to constrain the existence of distant 5–10Mplanets orbiting at hundreds of au. The existence of such a planet has been proposed to explain a reported clustering in the orbits of highly eccentric “extreme” trans-Neptunian objects (or eTNOs), although this hypothesis remains controversial. We engage in a focused computational case study of the 9:1 resonance, generating synthetic populations and integrating them for 1 Gyr in the presence of 81 different test planets with various masses, perihelion distances, eccentricities, and inclinations. While none of the tested planets are incompatible with the existence of 9:1 resonators, our integrations shed light on the character of the interaction between such planets and nearbyn:1 resonances, and we use this knowledge to construct a simple heuristic method for determining whether or not a given planet could destabilize a given resonant population. We apply this method to the currently estimated properties of Planet 9, and find that a large primordial population in the 15:1 resonance (or beyond), if discovered in the future, could potentially constrain the existence of this planet.

     
    more » « less
  2. Abstract The detached trans-Neptunian objects (TNOs) are those with semimajor axes beyond the 2:1 resonance with Neptune that are neither resonant nor scattering. Using the detached sample from the Outer Solar System Origins Survey (OSSOS) telescopic survey, we produce the first studies of their orbital distribution based on matching the orbits and numbers of the known TNOs after accounting for survey biases. We show that the detached TNO perihelion ( q ) distribution cannot be uniform but is instead better matched by two uniform components with a break near q ≈ 40 au. We produce parametric two-component models that are not rejectable by the OSSOS data set and estimate that there are 36,000 − 9000 + 12 , 000 detached TNOs with absolute magnitudes H r < 8.66 ( D ≳ 100 km) and semimajor axes 48 au < a < 250 au (95% confidence limits). Although we believe that these heuristic two-parameter models yield a correct population estimate, we then use the same methods to show that the perihelion distribution of a detached disk created by a simulated rogue planet matches the q distribution even better, suggesting that the temporary presence of other planets in the early solar system is a promising model to create today’s large semimajor axis TNO population. This cosmogonic simulation results in a detached TNO population estimate of 48,000 − 12 , 000 + 15 , 000 . Because this illustrates how difficult-to-detect q > 50 au objects are likely present, we conclude that there are (5 ± 2) × 10 4 dynamically detached TNOs, roughly twice as many as in the entire trans-Neptunian hot main belt. 
    more » « less
  3. Abstract

    Mean plane measurements of the Kuiper Belt from observational data are of interest for their potential to test dynamical models of the solar system. Recent measurements have yielded inconsistent results. Here we report a measurement of the Kuiper Belt’s mean plane with a sample size more than twice as large as in previous measurements. The sample of interest is the nonresonant Kuiper Belt objects, which we identify by using machine learning on the observed Kuiper Belt population whose orbits are well determined. We estimate the measurement error with a Monte Carlo procedure. We find that the overall mean plane of the nonresonant Kuiper Belt (semimajor axis range of 35–150 au) and also that of the classical Kuiper Belt (semimajor axis range of 42–48 au) are both close to (within ∼0.°7) but distinguishable from the invariable plane of the solar system to greater than 99.7% confidence. When binning the sample into smaller semimajor axis bins, we find the measured mean plane is mostly consistent with both the invariable plane and the theoretically expected Laplace surface forced by the known planets. Statistically significant discrepancies are found only in the semimajor axis ranges 40.3–42 au and 45–50 au; these ranges are in proximity to theν8secular resonance and Neptune’s 2:1 mean motion resonance where the theory for the Laplace surface is likely to be inaccurate. These results do not support a previously reported anomalous warp at semimajor axes above 50 au.

     
    more » « less
  4. Abstract There have been 77 TNOs discovered to be librating in the distant trans-Neptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7 au) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here, we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, j : k resonant objects were grouped by k in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering–sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering–sticking can explain the entire distant resonant population or not. 
    more » « less
  5. ABSTRACT We considered four TNOs on elongated orbits with small semimajor axis uncertainties: Sedna, 2004 VN112, 2012 VP113, and 2000 CR105. We found two sets of simultaneous near commensurabilities for these objects with a putative Planet Nine that are compatible with the current uncertainties in the objects’ orbital periods. We conducted a large number of numerical simulations of quasi-coplanar simulations (i.e. inclinations of Planet Nine and TNOs set to zero but not the giant planets) to find which values of Planet Nine’s mean anomaly and longitude of perihelion could put these objects in stable mean motion resonance (MMR) librations. We found no cases of simultaneous stable librations for multiple TNOs for more than 800 My, with most librations lasting much shorter than this time-scale. The objects 2004 VN112 and 2000 CR105 are the most unstable. Being in an MMR is not a strict requirement for long-term survival in 3D simulations, so our result cannot be used to refute Planet Nine’s existence. Nevertheless, it casts doubt and shows that theoretical attempts to constrain the position of the planet on the sky are not possible. 
    more » « less