Seawater temperatures are increasing, with many unquantified impacts on marine diseases. While prolonged temperature stress can accelerate host-pathogen interactions, the outcomes in nature are poorly quantified. We monitored eelgrass wasting disease (EWD) from 2013-2017 and correlated mid-summer prevalence of EWD with remotely sensed seawater temperature metrics before, during, and after the 2015-2016 marine heatwave in the northeast Pacific, the longest marine heatwave in recent history. Eelgrass shoot density declined by 60% between 2013 and 2015 and did not recover. EWD prevalence ranged from 5-70% in 2013 and increased to 60-90% by 2017. EWD severity approximately doubled each year between 2015 and 2017. EWD prevalence was positively correlated with warmer temperature for the month prior to sampling while EWD severity was negatively correlated with warming prior to sampling. This complex result may be mediated by leaf growth; bigger leaves may be more likely to be diseased, but may also grow faster than lesions, resulting in lower severity. Regional stressors leading to population declines prior to or early in the heatwave may have exacerbated the effects of warming on eelgrass disease susceptibility and reduced the resilience of this critical species.
Effects of Seagrass Wasting Disease on Eelgrass Growth and Belowground Sugar in Natural Meadows
Seagrass meadows provide valuable ecosystem benefits but are at risk from disease. Eelgrass ( Zostera marina ) is a temperate species threatened by seagrass wasting disease (SWD), caused by the protist Labyrinthula zosterae . The pathogen is sensitive to warming ocean temperatures, prompting a need for greater understanding of the impacts on host health under climate change. Previous work demonstrates pathogen cultures grow faster under warmer laboratory conditions and documents positive correlations between warmer ocean temperatures and disease levels in nature. However, the consequences of disease outbreaks on eelgrass growth remain poorly understood. Here, we examined the effect of disease on eelgrass productivity in the field. We coupled in situ shoot marking with high-resolution imagery of eelgrass blades and used an artificial intelligence application to determine disease prevalence and severity from digital images. Comparisons of eelgrass growth and disease metrics showed that SWD impaired eelgrass growth and accumulation of non-structural carbon in the field. Blades with more severe disease had reduced growth rates, indicating that disease severity can limit plant growth. Disease severity and rhizome sugar content were also inversely related, suggesting that disease reduced belowground carbon accumulation. Finally, repeated measurements of diseased blades indicated that lesions can grow faster more »
- Award ID(s):
- 1829921
- Publication Date:
- NSF-PAR ID:
- 10373332
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadow to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years.more »
-
Raina, Jean-Baptiste (Ed.)ABSTRACT Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host–pathogen–microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina , is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae . We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae andmore »
-
BACKGROUND Evaluating effects of global warming from rising atmospheric carbon dioxide (CO 2 ) concentrations requires resolving the processes that drive Earth’s carbon stocks and flows. Although biogeomorphic wetlands (peatlands, mangroves, salt marshes, and seagrass meadows) cover only 1% of Earth’s surface, they store 20% of the global organic ecosystem carbon. This disproportionate share is fueled by high carbon sequestration rates per unit area and effective storage capacity, which greatly exceed those of oceanic and forest ecosystems. We highlight that feedbacks between geomorphology and landscape-building wetland vegetation underlie these critical qualities and that disruption of these biogeomorphic feedbacks can switch these systems from carbon sinks into sources. ADVANCES A key advancement in understanding wetland functioning has been the recognition of the role of reciprocal organism-landform interactions, “biogeomorphic feedbacks.” Biogeomorphic feedbacks entail self-reinforcing interactions between biota and geomorphology, by which organisms—often vegetation—engineer landforms to their own benefit following a positive density-dependent relationship. Vegetation that dominates major carbon-storing wetlands generate self-facilitating feedbacks that shape the landscape and amplify carbon sequestration and storage. As a result, per unit area, wetland carbon stocks and sequestration rates greatly exceed those of terrestrial forests and oceans, ecosystems that worldwide harbor large stocks because of their largemore »
-
International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contaminationmore »