skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sources of soil carbon loss during soil density fractionation: Laboratory loss or seasonally variable soluble pools?
Award ID(s):
2025755
PAR ID:
10373363
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geoderma
Volume:
382
Issue:
C
ISSN:
0016-7061
Page Range / eLocation ID:
114776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Construction-related ground-disturbing activities leave exposed land susceptible to soil loss and increase the risk of polluting adjacent waterbodies with sediment-laden discharge. State and federal regulations require stormwater pollution prevention plans to be implemented during construction to mitigate the impact of stormwater runoff. Areas prone to soil loss can be identified early in site planning using soil loss modeling. Identification of these critical areas could influence the design and placement of erosion and sediment control practices. The Revised Universal Soil Loss Equation (RUSLE) can be applied to estimate the soil loss on construction sites in tonnes per Ha per year (tons/acre/year) by considering factors of rainfall erosivity, soil erodibility, length of slope, erosion control, and sediment control. This study integrates geographic information system (GIS) with RUSLE to create soil loss models for residential, commercial, and highway construction scenarios in the contiguous U.S.A. These three construction types were modeled in various locations throughout the country to assess erosive risk. Soil loss outputs were categorized into five risk tiers ranging from very low to very high. Southeastern states had the highest estimated soil loss during residential, commercial, and highway construction, reaching rates of 1,464, 706, and 1,302 tonnes per Ha per year (653, 315, and 581 tons/acre/year), respectively. This study provides a customizable model for any site-specific slope-length factor outside of the three construction scenarios modeled. Integration of GIS provides a unique opportunity to apply RUSLE across a larger landscape. The presented macro-scale data can be used for the design of erosion and sediment control practices. 
    more » « less
  2. Soil erosion in agricultural landscapes reduces crop yields, leads to loss of ecosystem services, and influences the global carbon cycle. Despite decades of soil erosion research, the magnitude of historical soil loss remains poorly quantified across large agricultural regions because preagricultural soil data are rare, and it is challenging to extrapolate local-scale erosion observations across time and space. Here we focus on the Corn Belt of the midwestern United States and use a remote-sensing method to map areas in agricultural fields that have no remaining organic carbon-rich A-horizon. We use satellite and LiDAR data to develop a relationship between A-horizon loss and topographic curvature and then use topographic data to scale-up soil loss predictions across 3.9 × 105km2of the Corn Belt. Our results indicate that 35 ± 11% of the cultivated area has lost A-horizon soil and that prior estimates of soil degradation from soil survey-based methods have significantly underestimated A-horizon soil loss. Convex hilltops throughout the region are often completely denuded of A-horizon soil. The association between soil loss and convex topography indicates that tillage-induced erosion is an important driver of soil loss, yet tillage erosion is not simulated in models used to assess nationwide soil loss trends in the United States. We estimate that A-horizon loss decreases crop yields by 6 ± 2%, causing $2.8 ± $0.9 billion in annual economic losses. Regionally, we estimate 1.4 ± 0.5 Pg of carbon have been removed from hillslopes by erosion of the A-horizon, much of which likely remains buried in depositional areas within the fields. 
    more » « less