skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What does not kill you can make you stronger: Variation in plasticity in response to early temporally heterogeneous hydrological experience
Abstract Temporally heterogeneous environments may drive rapid and continuous plastic responses, leading to highly variable plasticity in traits. However, direct experimental evidence for such meta‐plasticity due to environmental heterogeneity is rare.Our objective was to investigate the effects of early experience with temporally heterogeneous water availability on the subsequent plasticity of plant species in response to water conditions.We subjected eight plant species from three habitats, four exotic and four native to North America, to initial exposure to either a first round of alternating drought and inundation treatment (Ehet, temporally heterogeneous experience) or a consistently moderate water supply (Ehom, homogeneous experience), and to a second round of drought, moderate watering or inundation treatments. Afterwards the performance in a series of traits of these species, after the first and second rounds of treatments, was measured.Compared withEhom,Ehetincreased final mean total mass of all species considered together but did not affect mean mortality.Ehetrelative toEhom, decreased the initial total mass of native species as a group, but increased the mass of exotic species or species from hydric habitats;Ehetalso increased the late growth of natives, but did not for exotics, and increased the late growth of mesic species more than xeric and hydric species.Our results suggest that previous exposure to temporal heterogeneity in water supply may be not beneficial immediately, but can be beneficial for plant growth and response to water stress later in a plant's lifetime. Heterogeneous experiences may not necessarily enhance the degree of plasticity but may improve the expression of plasticity in terms of better performance later, effects of which differ for different groups of species, suggesting species‐specific strategies for dealing with fluctuating abiotic environments.Synthesis. Previous temporally heterogeneous experience can benefits plant growth later in life though modulating the expression of plasticity, leading to adaptive meta‐plasticity. Studies of meta‐plasticity may improve our understanding not only on the importance of variable plasticity in relation to how plants cope with environmental challenges but also on the costs versus benefits of plastic responses and its limits over the long term.  more » « less
Award ID(s):
1757351
PAR ID:
10373376
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
110
Issue:
10
ISSN:
0022-0477
Format(s):
Medium: X Size: p. 2418-2432
Size(s):
p. 2418-2432
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype‐specific trait responses differ based on water and/or nutrient availability.Diploid and autotetraploidSolidago gigantea(Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above‐ and belowground biomass, R/S), and physiological (Anet,E,WUE) responses were measured.Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high‐water and nutrient treatments were larger, plants grown in low‐water or high‐nutrient treatments had higherWUEbut lowerE, andAnetandErates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and largerAnetthan diploids.Nutrient and water availability could influence intra‐ and interspecific competitive outcomes. AlthoughS. giganteacytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploidS. giganteamight render them more competitive for resources and niche space than diploids. 
    more » « less
  2. Abstract Plasticity in plant traits, including secondary metabolites, is critical to plant survival and competitiveness under stressful conditions. The ability of a plant to respond effectively to combined stressors can be impacted by crosstalk in biochemical pathways, resource availability and evolutionary history, but such responses remain underexplored. In particular, we know little about intraspecific variation in response to combined stressors or whether such variation is associated with the stress history of a given population.Here, we investigated the consequences of combined water and herbivory stress for plant traits, including relative growth rate, leaf morphology and various measures of phytochemistry, using a common garden ofAsclepias fascicularismilkweeds. To examine how plant trait means and plasticities depend on the history of environmental stress, seeds for the experiment were collected from across a gradient of aridity in the Great Basin, United States. We then conducted a factorial experiment crossing water limitation with herbivory.Plants responded to water limitation alone by increasing the evenness of UV‐absorbent secondary metabolites and to herbivory alone by increasing the richness of metabolites. However, plants that experienced combined water and herbivory stress exhibited similar phytochemical diversity to well‐watered control plants. This lack of plasticity in phytochemical diversity in plants experiencing combined stressors was associated with a reduction in relative growth rates.Leaf chemistry means and plasticities exhibited clinal variation corresponding to seed source water deficits. The total concentration of UV‐absorbent metabolites decreased with increasing water availability among seed sources, driven by higher concentrations of flavonol glycosides, which are hypothesized to act as antioxidants, among plants from drier sites. Plants sourced from drier sites exhibited higher plasticity in flavonol glycoside concentrations in response to water limitation, which increased phytochemical evenness, but simultaneous herbivory dampened plant responses to water limitation irrespective of seed source.Synthesis. These results suggest that climatic history can affect intraspecific phytochemical plasticity, which may confer tolerance to water limitation, but that co‐occurring herbivory disrupts such patterns. Global change is increasing the frequency and intensity of stress combinations, such that understanding intraspecific responses to combined stressors is critical for predicting the persistence of plant populations. 
    more » « less
  3. Abstract Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens and fungi — suggesting biotic interactions between biocrusts and plants have been at play for some 2,000 million years. Today, biocrusts coexist with plants in dryland ecosystems worldwide, and have been shown to both facilitate or inhibit plant species performance depending on ecological context. Yet, the factors that drive the direction and magnitude of these effects remain largely unknown.We conducted a meta‐analysis of plant responses to biocrusts using a global dataset encompassing 1,004 studies from six continents.Meta‐analysis revealed there is no simple positive or negative effect of biocrusts on plants. Rather, plant responses differ by biocrust composition and plant species traits and vary across plant ontogeny. Moss‐dominated biocrusts facilitated, while lichen‐dominated biocrusts inhibited overall plant performance. Plant responses also varied among plant functional groups: C4grasses received greater benefits from biocrusts compared to C3grasses, and plants without N‐fixing symbionts responded more positively to biocrusts than plants with N‐fixing symbionts. Biocrusts decreased germination but facilitated growth of non‐native plant species.Synthesis. Results suggest that interspecific variation in plant responses to biocrusts, contingent on biocrust type, plant traits, and ontogeny can have strong impacts on plant species performance. These findings have important implications for understanding biocrust contributions to plant productivity and community assembly processes in ecosystems worldwide. 
    more » « less
  4. Summary Mosses hold a unique position in plant evolution and are crucial for protecting natural, long‐term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2, produced by soil respiration. However, the impact of elevated CO2(eCO2) levels on mosses remains underexplored.We determined the growth responses of the mossPhyscomitrium patensto eCO2in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes.Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses ofP. patensto eCO2. Elevated CO2impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2,P. patensexhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments.These results provide a framework for comparing the eCO2responses ofP. patenswith other plant groups and provide crucial insights into moss growth that may benefit climate change models. 
    more » « less
  5. Abstract The effect of species loss on ecosystem productivity is determined by both the functional contribution of the species lost, and the response of the remaining species in the community. According to the mass ratio hypothesis, the loss of a dominant plant species, which has a larger proportionate contribution to productivity, is expected to exert an overwhelming effect on this important ecosystem function. However, via competitive release, loss of a dominant species can provide the opportunity for other plant species to establish, thrive and become abundant in the community, potentially compensating for the function lost. Furthermore, if resource limitation is removed, then the compensatory response of function to the loss of a dominant species should be greater and more rapid than if resources are more limiting.To evaluate how resources may limit compensation of above‐ground productivity to the loss of a dominant plant species, we experimentally removed the C4perennial tallgrass,Andropogon gerardii, from intact plant communities. We added water for 4 years, as well as nitrogen in the fourth year, to test the effect of resource limitation on the compensatory response.Overall, above‐ground biomass production increased in the remaining community with both water and nitrogen addition. However, this increase in biomass production was not sufficient to fully compensate for the loss ofA. gerardii, indicating water and nitrogen were not limiting short‐term compensation in this community.Following the removal of the dominant species, there was reordering of species abundances in the community, rather than changes in species richness. The C4grassBouteloua curtipendulawas the most responsive species, increasing by 57.9% in abundance with water addition and 91.0% with both water and nitrogen addition. Despite this dramatic increase in abundance, its short stature and lower per capita biomass production prevented this species from compensating for the loss ofA. gerardii.Synthesis. Short‐term compensation after the loss of a dominant plant species can be hastened by increased resource availability, but ultimately full compensation appears to be limited by the presence and abundance of species in the remaining community that possess traits that allow them compensate for the species lost. 
    more » « less