skip to main content


Title: Using 3D and 2D analysis for analyzing large-scale asymmetry in galaxy spin directions
Abstract

The nature of galaxy spin is still not fully known. Iye, Yagi, and Fukumoto (2021, AJ, 907, 123) applied a 3D analysis to a dataset of bright SDSS galaxies that was used in the past for photometric analysis. They showed that the distribution of spin directions of spiral galaxies is random, providing a dipole axis with low statistical significance of 0.29σ. However, to show random distribution, two decisions were made, each of which can lead to random distribution regardless of the real distribution of the spin direction of galaxies. The first decision was to limit the dataset arbitrarily to z < 0.1, which is a redshift range in which previous literature already showed that random distribution is expected. More importantly, while the 3D analysis requires the redshift of each galaxy, the analysis was done with the photometric redshift. If the asymmetry existed, its signal is expected to be an order of magnitude weaker than the error of the photometric redshift, and therefore a low statistical signal under these conditions is expected. When using the exact same data without limiting to zphot < 0.1 and without using the photometric redshift, the distribution of the spin directions in that dataset shows a statistical signal of >2σ. Code and data for reproducing the analysis are publicly available. These results are in agreement with other experiments with SDSS, Pan-STARRS, HST, and the DESI Legacy Survey. The paper also examines other previous studies that showed random distribution in galaxy spin directions. While further research will be required, the current evidence suggests that large-scale asymmetry between the number of clockwise and counterclockwise galaxies cannot be ruled out.

 
more » « less
NSF-PAR ID:
10373403
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
74
Issue:
5
ISSN:
0004-6264
Format(s):
Medium: X Size: p. 1114-1130
Size(s):
["p. 1114-1130"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope ( HST ) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ . 
    more » « less
  2. null (Ed.)
    Observations of non-random distribution of galaxies with opposite spin directions have recently attracted considerable attention. Here, a method for identifying cosine-dependence in a dataset of galaxies annotated by their spin directions is described in the light of different aspects that can impact the statistical analysis of the data. These aspects include the presence of duplicate objects in a dataset, errors in the galaxy annotation process, and non-random distribution of the asymmetry that does not necessarily form a dipole or quadrupole axes. The results show that duplicate objects in the dataset can artificially increase the likelihood of cosine dependence detected in the data, but a very high number of duplicate objects is required to lead to a false detection of an axis. Inaccuracy in galaxy annotations has relatively minor impact on the identification of cosine dependence when the error is randomly distributed between clockwise and counterclockwise galaxies. However, when the error is not random, even a small bias of 1% leads to a statistically significant cosine dependence that peaks at the celestial pole. Experiments with artificial datasets in which the distribution was not random showed strong cosine dependence even when the data did not form a full dipole axis alignment. The analysis when using the unmodified data shows asymmetry profile similar to the profile shown in multiple previous studies using several different telescopes. 
    more » « less
  3. Gaite, Jose (Ed.)
    The distribution of the spin directions of spiral galaxies in the Sloan Digital Sky Survey has been a topic of debate in the past two decades, with conflicting conclusions reported even in cases where the same data were used. Here, we follow one of the previous experiments by applying the SpArcFiRe algorithm to annotate the spin directions in an original dataset of Galaxy Zoo 1. The annotation of the galaxy spin directions is carried out after the first step of selecting the spiral galaxies in three different manners: manual analysis by Galaxy Zoo classifications, by a model-driven computer analysis, and with no selection of spiral galaxies. The results show that when spiral galaxies are selected by Galaxy Zoo volunteers, the distribution of their spin directions as determined by SpArcFiRe is not random, which agrees with previous reports. When selecting the spiral galaxies using a model-driven computer analysis or without selecting the spiral galaxies at all, the distribution is also not random. Simple binomial distribution analysis shows that the probability of the parity violation to occur by chance is lower than 0.01. Fitting the spin directions as observed from the Earth to cosine dependence exhibits a dipole axis with statistical strength of 2.33 σ to 3.97 σ . These experiments show that regardless of the selection mechanism and the analysis method, all experiments show similar conclusions. These results are aligned with previous reports using other methods and telescopes, suggesting that the spin directions of spiral galaxies as observed from the Earth exhibit a dipole axis formed by their spin directions. Possible explanations can be related to the large-scale structure of the universe or to the internal structure of galaxies. The catalogs of annotated galaxies generated as part of this study are available. 
    more » « less
  4. ABSTRACT

    We present direct constraints on galaxy intrinsic alignments (IAs) using the Dark Energy Survey Year 3 (DES Y3), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and its precursor, the Baryon Oscillation Spectroscopic Survey (BOSS). Our measurements incorporate photometric red sequence (redMaGiC) galaxies from DES with median redshift z ∼ 0.2–1.0, luminous red galaxies from eBOSS at z ∼ 0.8, and also an SDSS-III BOSS CMASS sample at z ∼ 0.5. We measure two-point IA correlations, which we fit using a model that includes lensing, magnification, and photometric redshift error. Fitting on scales 6 Mpc h−1 < rp < 70 Mpc h−1, we make a detection of IAs in each sample, at 5σ–22σ (assuming a simple one-parameter model for IAs). Using these red samples, we measure the IA–luminosity relation. Our results are statistically consistent with previous results, but offer a significant improvement in constraining power, particularly at low luminosity. With this improved precision, we see detectable dependence on colour between broadly defined red samples. It is likely that a more sophisticated approach than a binary red/blue split, which jointly considers colour and luminosity dependence in the IA signal, will be needed in future. We also compare the various signal components at the best-fitting point in parameter space for each sample, and find that magnification and lensing contribute $\sim 2\!-\!18~{{\ \rm per\ cent}}$ of the total signal. As precision continues to improve, it will certainly be necessary to account for these effects in future direct IA measurements. Finally, we make equivalent measurements on a sample of emission-line galaxies from eBOSS at z ∼ 0.8. We constrain the non-linear alignment amplitude to be $A_1=0.07^{+0.32}_{-0.42}$ (|A1| < 0.78 at 95 per cent CL).

     
    more » « less
  5. ABSTRACT

    It is difficult to accurately identify galaxy mergers and it is an even larger challenge to classify them by their mass ratio or merger stage. In previous work we used a suite of simulated mergers to create a classification technique that uses linear discriminant analysis to identify major and minor mergers. Here, we apply this technique to 1.3 million galaxies from the SDSS DR16 photometric catalogue and present the probability that each galaxy is a major or minor merger, splitting the classifications by merger stages (early, late, post-coalescence). We present publicly available imaging predictor values and all of the above classifications for one of the largest-yet samples of galaxies. We measure the major and minor merger fraction (fmerg) and build a mass-complete sample of galaxies, which we bin as a function of stellar mass and redshift. For the major mergers, we find a positive slope of fmerg with stellar mass and negative slope of fmerg with redshift between stellar masses of 10.5 < M*(log M⊙) < 11.6 and redshifts of 0.03 < z < 0.19. We are able to reproduce an artificial positive slope of the major merger fraction with redshift when we do not bin for mass or craft a complete sample, demonstrating the importance of mass completeness and mass binning. We determine that the positive trend of the major merger fraction with stellar mass is consistent with a hierarchical assembly scenario. The negative trend with redshift requires that an additional assembly mechanism, such as baryonic feedback, dominates in the local Universe.

     
    more » « less