skip to main content

Title: Using 3D and 2D analysis for analyzing large-scale asymmetry in galaxy spin directions
Abstract

The nature of galaxy spin is still not fully known. Iye, Yagi, and Fukumoto (2021, AJ, 907, 123) applied a 3D analysis to a dataset of bright SDSS galaxies that was used in the past for photometric analysis. They showed that the distribution of spin directions of spiral galaxies is random, providing a dipole axis with low statistical significance of 0.29σ. However, to show random distribution, two decisions were made, each of which can lead to random distribution regardless of the real distribution of the spin direction of galaxies. The first decision was to limit the dataset arbitrarily to z < 0.1, which is a redshift range in which previous literature already showed that random distribution is expected. More importantly, while the 3D analysis requires the redshift of each galaxy, the analysis was done with the photometric redshift. If the asymmetry existed, its signal is expected to be an order of magnitude weaker than the error of the photometric redshift, and therefore a low statistical signal under these conditions is expected. When using the exact same data without limiting to zphot < 0.1 and without using the photometric redshift, the distribution of the spin directions in that dataset shows more » a statistical signal of >2σ. Code and data for reproducing the analysis are publicly available. These results are in agreement with other experiments with SDSS, Pan-STARRS, HST, and the DESI Legacy Survey. The paper also examines other previous studies that showed random distribution in galaxy spin directions. While further research will be required, the current evidence suggests that large-scale asymmetry between the number of clockwise and counterclockwise galaxies cannot be ruled out.

« less
Authors:
Publication Date:
NSF-PAR ID:
10373403
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
74
Issue:
5
Page Range or eLocation-ID:
p. 1114-1130
ISSN:
0004-6264
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope ( HST ) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .
  2. Observations of non-random distribution of galaxies with opposite spin directions have recently attracted considerable attention. Here, a method for identifying cosine-dependence in a dataset of galaxies annotated by their spin directions is described in the light of different aspects that can impact the statistical analysis of the data. These aspects include the presence of duplicate objects in a dataset, errors in the galaxy annotation process, and non-random distribution of the asymmetry that does not necessarily form a dipole or quadrupole axes. The results show that duplicate objects in the dataset can artificially increase the likelihood of cosine dependence detected in the data, but a very high number of duplicate objects is required to lead to a false detection of an axis. Inaccuracy in galaxy annotations has relatively minor impact on the identification of cosine dependence when the error is randomly distributed between clockwise and counterclockwise galaxies. However, when the error is not random, even a small bias of 1% leads to a statistically significant cosine dependence that peaks at the celestial pole. Experiments with artificial datasets in which the distribution was not random showed strong cosine dependence even when the data did not form a full dipole axis alignment. Themore »analysis when using the unmodified data shows asymmetry profile similar to the profile shown in multiple previous studies using several different telescopes.« less
  3. ABSTRACT

    Knowing the redshift of galaxies is one of the first requirements of many cosmological experiments, and as it is impossible to perform spectroscopy for every galaxy being observed, photometric redshift (photo-z) estimations are still of particular interest. Here, we investigate different deep learning methods for obtaining photo-z estimates directly from images, comparing these with ‘traditional’ machine learning algorithms which make use of magnitudes retrieved through photometry. As well as testing a convolutional neural network (CNN) and inception-module CNN, we introduce a novel mixed-input model that allows for both images and magnitude data to be used in the same model as a way of further improving the estimated redshifts. We also perform benchmarking as a way of demonstrating the performance and scalability of the different algorithms. The data used in the study comes entirely from the Sloan Digital Sky Survey (SDSS) from which 1 million galaxies were used, each having 5-filtre (ugriz) images with complete photometry and a spectroscopic redshift which was taken as the ground truth. The mixed-input inception CNN achieved a mean squared error (MSE) =0.009, which was a significant improvement ($30{{\ \rm per\ cent}}$) over the traditional random forest (RF), and the model performed even better atmore »lower redshifts achieving a MSE = 0.0007 (a $50{{\ \rm per\ cent}}$ improvement over the RF) in the range of z < 0.3. This method could be hugely beneficial to upcoming surveys, such as Euclid and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), which will require vast numbers of photo-z estimates produced as quickly and accurately as possible.

    « less
  4. ABSTRACT

    Low surface brightness (LSB) galaxies are galaxies with central surface brightness fainter than the night sky. Due to the faint nature of LSB galaxies and the comparable sky background, it is difficult to search LSB galaxies automatically and efficiently from large sky survey. In this study, we established the low surface brightness galaxies autodetect (LSBG-AD) model, which is a data-driven model for end-to-end detection of LSB galaxies from Sloan Digital Sky Survey (SDSS) images. Object-detection techniques based on deep learning are applied to the SDSS field images to identify LSB galaxies and estimate their coordinates at the same time. Applying LSBG-AD to 1120 SDSS images, we detected 1197 LSB galaxy candidates, of which 1081 samples are already known and 116 samples are newly found candidates. The B-band central surface brightness of the candidates searched by the model ranges from 22 to 24 mag arcsec−2, quite consistent with the surface brightness distribution of the standard sample. A total of 96.46 per cent of LSB galaxy candidates have an axial ratio (b/a) greater than 0.3, and 92.04 per cent of them have $fracDev\_r$ < 0.4, which is also consistent with the standard sample. The results show that the LSBG-AD model learns the features of LSB galaxiesmore »of the training samples well, and can be used to search LSB galaxies without using photometric parameters. Next, this method will be used to develop efficient algorithms to detect LSB galaxies from massive images of the next-generation observatories.

    « less
  5. ABSTRACT

    We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from small-scale modelling uncertainties including baryonic physics.