skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Whistler Waves Associated With Electron Beams in Magnetopause Reconnection Diffusion Regions
Abstract

Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.

 
more » « less
Award ID(s):
2010231
PAR ID:
10373423
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electron-acoustic waves (EAWs) as well as electron-acoustic solitary structures play a crucial role in thermalization and acceleration of electron populations in Earth's magnetosphere. These waves are often observed in association with whistler-mode waves, but the detailed mechanism of EAW and whistler wave coupling is not yet revealed. We investigate the excitation mechanism of EAWs and their potential relation to whistler waves using particle-in-cell simulations. Whistler waves are first excited by electrons with a temperature anisotropy perpendicular to the background magnetic field. Electrons trapped by these whistler waves through nonlinear Landau resonance form localized field-aligned beams, which subsequently excite EAWs. By comparing the growth rate of EAWs and the phase mixing rate of trapped electron beams, we obtain the critical condition for EAW excitation, which is consistent with our simulation results across a wide region in parameter space. These results are expected to be useful in the interpretation of concurrent observations of whistler-mode waves and nonlinear solitary structures and may also have important implications for investigation of cross-scale energy transfer in the near-Earth space environment.

     
    more » « less
  2. Abstract

    The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.

     
    more » « less
  3. Abstract

    A 2‐D GCPIC simulation in a dipole field system has been conducted to explore the excitation of oblique whistler mode chorus waves driven by energetic electrons with temperature anisotropy. The rising tone chorus waves are initially generated near the magnetic equator, consisting of a series of subpackets, and become oblique during their propagation. It is found that electron holes in the wave phase space, which are formed due to the nonlinear cyclotron resonance, oscillate in size with time during subpacket formation. The associated inhomogeneity factor varies accordingly, giving rise to various frequency chirping in different phases of subpackets. Distinct nongyrotropic electron distributions are detected in both wave gyrophase and stationary gyrophase. Landau resonance is found to coexist with cyclotron resonance. This study provides multidimensional electron distributions involved in subpacket formation, enabling us to comprehensively understand the nonlinear physics in chorus wave evolution.

     
    more » « less
  4. Abstract

    We discuss a role of the electron inertial effect on linearly polarized electromagnetic ion cyclotron (EMIC) waves at Earth. The linearly polarized EMIC waves have been previously suggested to be generated via mode conversion from the fast compressional wave at the ion‐ion hybrid (IIH) resonance. When the electron inertial effects are neglected, the wave normal angle of the mode‐converted IIH waves is 90° because the wave vector perpendicular to the magnetic field becomes infinite at the IIH resonance. When the electron inertial effect is considered, the mode‐converted IIH waves can propagate across the magnetic field lines, and the wavelength perpendicular to the magnetic field approaches the electron inertial length scale near the Buchsbaum resonance. These waves are referred to as electron inertial waves. Due to the electron inertial effect, the perpendicular wave number to the ambient magnetic field near the IIH resonance remains finite, and the wave normal angle is less than 90°. The wave normal angle where the maximum absorption occurs in a dipole magnetic field is 30–80°, which is consistent with the observed values near the magnetic equator. Therefore, the numerical results suggest that the linearly polarized EMIC wave generated via mode conversion near the IIH resonance can be detected in between the Buchsbaum and the IIH resonance frequencies, and these waves can have normal angle less than 90°.

     
    more » « less
  5. Abstract

    Based on observations from the Magnetospheric Multiscale mission, this study presents an analysis of a short large‐amplitude magnetic structures (SLAMS) event with simultaneous occurrence of low‐ and high‐frequency magnetosonic whistler waves. It was found that low‐frequency magnetosonic whistler waves around the lower‐hybrid frequency emerge in the presence of solar wind ions and local low‐energy ions in the trailing region of SLAMS. Additionally, counter‐propagating whistler waves (the high‐frequency branch of the magnetosonic whistler wave) are observed within SLAMS, coinciding with a perpendicular temperature anisotropy in the electron population. Instability analyses demonstrate that these low‐frequency waves are induced by the two‐stream instability associated with the cross‐field relative velocity between low‐energy ions and electrons, while whistler waves are locally generated by the whistler anisotropy instability. Our results shed light on the impact of SLAMS on particle and wave dynamics in the terrestrial foreshock.

     
    more » « less