skip to main content

Title: Measuring Cosmological Parameters with Type Ia Supernovae in redMaGiC Galaxies
Abstract

Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-zestimates are expected to be accurate toσΔz/(1+z)∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-zs on the measurement of the dark energy equation of statewis up to Δw∼ 0.01–0.02. With real data, we measure a difference inwwhen using the redMaGiC photo-zs versus the spec-zs of Δw= 0.005. Finally, more » we discuss how SNe in redMaGiC galaxies appear to comprise a more standardizable population, due to a weaker relation between color and luminosity (β) compared to the DES-3YR population by ∼5σ. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
NSF-PAR ID:
10373457
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
1
Page Range or eLocation-ID:
Article No. 62
ISSN:
0004-637X
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshiftszhost< 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, andsBV.

  2. Abstract

    Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲z≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-zHST data with 42 SNe Ia atz< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,w. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5σ−2.5σsignificance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +w= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measureH0=more »75.9 ± 2.2 km s−1Mpc−1from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versusH0= 71.2 ± 3.8 km s−1Mpc−1using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +w= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +w= −0.06 ± 0.07; these shifts of up to ∼0.11 inwcould point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-zsamples, new light-curve models, calibration improvements, and eventually by building high-zsamples from the Roman Space Telescope.

    « less
  3. ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Surveymore »of Space and Time.« less
  4. ABSTRACT We present improved photometric measurements for the host galaxies of 206 spectroscopically confirmed type Ia supernovae discovered by the Dark Energy Survey Supernova Program (DES-SN) and used in the first DES-SN cosmological analysis. For the DES-SN sample, when considering a 5D (z, x1, c, α, β) bias correction, we find evidence of a Hubble residual ‘mass step’, where SNe Ia in high-mass galaxies (>1010M⊙) are intrinsically more luminous (after correction) than their low-mass counterparts by $\gamma =0.040\pm 0.019$ mag. This value is larger by 0.031 mag than the value found in the first DES-SN cosmological analysis. This difference is due to a combination of updated photometric measurements and improved star formation histories and is not from host-galaxy misidentification. When using a 1D (redshift-only) bias correction the inferred mass step is larger, with $\gamma =0.066\pm 0.020$ mag. The 1D−5D γ difference for DES-SN is $0.026\pm 0.009$ mag. We show that this difference is due to a strong correlation between host galaxy stellar mass and the x1 component of the 5D distance-bias correction. Including an intrinsic correlation between the observed properties of SNe Ia, stretch and colour, and stellar mass in simulated SN Ia samples, we show that a 5D fit recoversmore »γ with −9 mmag bias compared to a +2 mmag bias for a 1D fit. This difference can explain part of the discrepancy seen in the data. Improvements in modelling correlations between galaxy properties and SN is necessary to ensure unbiased precision estimates of the dark energy equation of state as we enter the era of LSST.« less
  5. Abstract

    We present optical and near-infrared photometric and spectroscopic observations of the fast-declining Type Ia supernova (SN) 2015bo. SN 2015bo is underluminous (MB= −17.50 ± 0.15 mag) and has a fast-evolving light curve (Δm15(B) = 1.91 ± 0.01 mag andsBV= 0.48 ± 0.01). It has a unique morphology in the observedVrcolor curve, where it is bluer than all other supernovae (SNe) in the comparison sample. A56Ni mass of 0.17 ± 0.03Mwas derived from the peak bolometric luminosity, which is consistent with its location on the luminosity–width relation. Spectroscopically, SN 2015bo is a cool SN in the Branch classification scheme. The velocity evolution measured from spectral features is consistent with 1991bg-like SNe. SN 2015bo has a SN twin (similar spectra)andsibling (same host galaxy), SN 1997cn. Distance moduli ofμ= 34.33 ± 0.01 (stat) ±0.11 (sys) mag andμ= 34.34 ± 0.04 (stat) ± 0.12 (sys) mag are derived for SN 2015bo and SN 1997cn, respectively. These distances are consistent at the 0.06σlevel with each other, and they are also consistent with distances derived using surface-brightness fluctuations and redshift-corrected cosmology. This suggests that fast-declining SNe could be accurate distance indicators, which should not be excluded from future cosmological analyses.