Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the Gaia
The orbital-period (
- Publication Date:
- NSF-PAR ID:
- 10373459
- Journal Name:
- The Astrophysical Journal
- Volume:
- 938
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 46
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract G RPband spanning the absolute magnitude range 14.5 > > 4.0, corresponding to a mass range of 0.08M ⊙≲M ≲ 1.0M ⊙. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forK s magnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM ≲ 1.0M ⊙, which wemore » -
Abstract Populating the exoplanet mass–radius diagram in order to identify the underlying relationship that governs planet composition is driving an interdisciplinary effort within the exoplanet community. The discovery of hot super-Earths—a high-temperature, short-period subset of the super-Earth planet population—has presented many unresolved questions concerning the formation, evolution, and composition of rocky planets. We report the discovery of a transiting, ultra-short-period hot super-Earth orbiting
TOI-1075 (TIC351601843) , a nearby (d = 61.4 pc) late-K/early-M-dwarf star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius of 1.791R ⊕and an orbital period of 0.605 day (14.5 hr). We precisely measure the planet mass to be 9.95M ⊕using radial velocity measurements obtained with the Planet Finder Spectrograph mounted on the Magellan II telescope. Our radial velocity data also show a long-term trend, suggesting an additional planet in the system. While TOI-1075 b is expected to have a substantial H/He atmosphere given its size relative to the radius gap, its high density ( g cm−3) is likely inconsistent with this possibility. We explore TOI-1075 b’s location relative to the M-dwarf radius valley, evaluate the planet’s prospects for atmospheric characterization, andmore » -
ABSTRACT We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirmmore »
-
Abstract We present the discovery of 17 double white dwarf (WD) binaries from our ongoing search for extremely low mass (ELM) < 0.3
M ⊙WDs, objects that form from binary evolution. Gaia parallax provides a new means of target selection that we use to evaluate our original ELM Survey selection criteria. Cross-matching the Gaia and Sloan Digital Sky Survey (SDSS) catalogs, we identify an additional 36 ELM WD candidates with 17 <g < 19 mag and within the 3σ uncertainties of our original color selection. The resulting discoveries imply the ELM Survey sample was 90% complete in the color range −0.4 < (g −r )0< −0.1 mag (approximately 9000 K <T eff< 22,000 K). Our observations complete the sample in the SDSS footprint. Two newly discovered binaries, J123950.370−204142.28 and J232208.733+210352.81, have orbital periods of 22.5 and 32 minutes, respectively, and are future Laser Interferometer Space Antenna gravitational-wave sources. -
Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a
P orb= 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star,M sdB= 0.383 ± 0.028M ⊙with a massive white dwarf companion,M WD= 0.725 ± 0.026M ⊙. From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas ourMESA model predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using theMESA stellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92M ⊙with a thick helium layer of 0.17M ⊙. This will lead to a detonation that will likely destroymore »