skip to main content


Title: The Directly Imaged Exoplanet Host Star 51 Eridani is a Gamma Doradus Pulsator
Abstract

51 Eri is well known for hosting a directly imaged giant planet and for its membership to theβPictoris moving group. Using 2 minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS), we detect multiperiodic variability in 51 Eri that is consistent with pulsations of Gamma Doradus (γDor) stars. We identify the most significant pulsation modes (with frequencies between ∼0.5 and 3.9 cycles day−1and amplitudes ranging between ∼1 and 2 mmag) as dipole and quadrupole gravity modes, as well as Rossby modes, as previously observed in KeplerγDor stars. Our results demonstrate that previously reported variability attributed to stellar rotation is instead likely due toγDor pulsations. Using the mean frequency of the= 1 gravity modes, together with empirical trends of the KeplerγDor population, we estimate a plausible stellar core rotation period of0.90.1+0.3days for 51 Eri. We find no significant evidence for transiting companions around 51 Eri in the residual light curve. The detection ofγDor pulsations presented here, together with follow-up observations and modeling, may enable the determination of an asteroseismic age for this benchmark system. Future TESS observations would allow a constraint on the stellar core rotation rate, which in turn traces the surface rotation rate, and thus would help clarify whether or not the stellar equatorial plane and orbit of 51 Eri b are coplanar.

 
more » « less
NSF-PAR ID:
10373544
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
938
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
Article No. 49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M(83.81 ± 2.10MJ), a radius of0.11140.0050+0.0048R(1.08410.04870.0467RJ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of1.97160.0083+0.0080days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.

     
    more » « less
  2. Abstract

    PG 1159-035 is the prototype of the PG 1159 hot (pre-)white dwarf pulsators. This important object was observed during the Kepler satellite K2 mission for 69 days in 59 s cadence mode and by the TESS satellite for 25 days in 20 s cadence mode. We present a detailed asteroseismic analysis of those data. We identify a total of 107 frequencies representing 32= 1 modes, 27 frequencies representing 12= 2 modes, and eight combination frequencies. The combination frequencies and the modes with very highkvalues represent new detections. The multiplet structure reveals an average splitting of 4.0 ± 0.4μHz for= 1 and 6.8 ± 0.2μHz for= 2, indicating a rotation period of 1.4 ± 0.1 days in the region of period formation. In the Fourier transform of the light curve, we find a significant peak at 8.904 ± 0.003μHz suggesting a surface rotation period of 1.299 ± 0.002 days. We also present evidence that the observed periods change on timescales shorter than those predicted by current evolutionary models. Our asteroseismic analysis finds an average period spacing for= 1 of 21.28 ± 0.02 s. The= 2 modes have a mean spacing of 12.97 ± 0.4 s. We performed a detailed asteroseismic fit by comparing the observed periods with those of evolutionary models. The best-fit model hasTeff= 129, 600 ± 11 100 K,M*= 0.565 ± 0.024M, andlogg=7.410.54+0.38, within the uncertainties of the spectroscopic determinations. We argue for future improvements in the current models, e.g., on the overshooting in the He-burning stage, as the best-fit model does not predict excitation for all of the pulsations detected in PG 1159-035.

     
    more » « less
  3. Abstract

    We analyzed 20 s cadence Transiting Exoplanet Survey Satellite time-series photometry of the exoplanet host star HR 8799 collected in Sector 56. The amplitude spectrum shows Gamma Doradus (γ Dor) pulsations consistent with previous space-based photometry from MOST. Assuming that HR 8799 is a representative ofγ Dor stars in the Kepler sample, the dominant dipole mode at 1.98 cycles day−1implies a core rotation period of ∼0.7 day, which combined withvsiniand stellar radius measurements would result in a preliminary stellar inclination of ∼28° assuming rigid rotation. We find no significant residual photometric variation after removing the pulsation signal aside from a ∼9 days trend that is likely a systematic effect or an artifact from performing aggressive frequency subtraction in the presence of red noise.

     
    more » « less
  4. Abstract

    While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject tosinidegeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf withM=723+3MJup=0.0690.003+0.003Morbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star withM=932+2MJup=0.0880.002+0.002Morbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star withM=827+7MJup=0.0790.007+0.007Mtransiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.

     
    more » « less
  5. Abstract

    We present a catalog of stellar companions to host stars of Transiting Exoplanet Survey Satellite Objects of Interest (TOIs) identified from a marginalized likelihood ratio test that incorporates astrometric data from the Gaia Early Data Release 3 catalog (EDR3). The likelihood ratio is computed using a probabilistic model that incorporates parallax and proper-motion covariances and marginalizes the distances and 3D velocities of stars in order to identify comoving stellar pairs. We find 172 comoving companions to 170 non-false-positive TOI hosts, consisting of 168 systems with two stars and 2 systems with three stars. Among the 170 TOI hosts, 54 harbor confirmed planets that span a wide range of system architectures. We conduct an investigation of the mutual inclinations between the stellar companion and planetary orbits using Gaia EDR3, which is possible because transiting exoplanets must orbit within the line of sight; thus, stellar companion kinematics can constrain mutual inclinations. While the statistical significance of the current sample is weak, we find that7320+14%of systems with Kepler-like architectures (RP≤ 4Randa< 1 au) appear to favor a nonisotropic orientation between the planetary and companion orbits with a typical mutual inclinationαof 35° ± 24°. In contrast,6535+20% of systems with close-in giants (P< 10 days andRP> 4R) favor a perpendicular geometry (α= 89° ± 21°) between the planet and companion. Moreover, the close-in giants with large stellar obliquities (planet–host misalignment) are also those that favor significant planet–companion misalignment.

     
    more » « less