Plants can send long-distance cell-to-cell signals from a single tissue subjected to stress to the entire plant. This ability is termed “systemic signaling” and is essential for plant acclimation to stress and/or defense against pathogens. Several signaling mechanisms are associated with systemic signaling, including the reactive oxygen species (ROS) wave, calcium wave, hydraulic wave, and electric signals. The ROS wave coordinates multiple physiological, molecular, and metabolic responses among different parts of the plant and is essential for systemic acquired acclimation (SAA) to stress. In addition, it is linked with several plant hormones, including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). However, how these plant hormones modulate the ROS wave and whether they are required for SAA is not clear. Here we report that SA and JA play antagonistic roles in modulating the ROS wave in Arabidopsis (Arabidopsis thaliana). While SA augments the ROS wave, JA suppresses it during responses to local wounding or high light (HL) stress treatments. We further show that ethylene and ABA are essential for regulation of the ROS wave during systemic responses to local wounding treatment. Interestingly, we found that the redox-response protein NONEXPRESSOR OF PATHOGENESIS RELATED PROTEIN 1 is required for systemic ROS accumulation in response to wounding or HL stress, as well as for SAA to HL stress. Taken together, our findings suggest that interplay between JA and SA might regulate systemic signaling and SAA during responses of plants to abiotic stress or wounding.
more » « less- Award ID(s):
- 1932639
- PAR ID:
- 10373565
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Plant Physiology
- ISSN:
- 0032-0889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Sensing of heat, high light (HL), or mechanical injury by a single leaf of a plant results in the activation of different systemic signals that reach systemic tissues within minutes and trigger systemic acquired acclimation (SAA) or systemic wound responses (SWRs), resulting in a heightened state of stress readiness of the entire plant. Among the different signals associated with rapid systemic responses to stress in plants are electric, calcium, and reactive oxygen species (ROS) waves. These signals propagate from the stressed or injured leaf to the rest of the plant through the plant vascular bundles, and trigger SWRs and SAA in systemic tissues. However, whether they can propagate through other cell types, and whether or not they are interlinked, remain open questions. Here we report that in response to wounding or heat stress (HS), but not HL stress, the ROS wave can propagate through mesophyll cells of Arabidopsis (Arabidopsis thaliana). Moreover, we show that ROS production by mesophyll cells during these stresses is sufficient to restore SWR and SAA transcript accumulation in systemic leaves, as well as SAA to HS (but not HL). We further show that propagation of the ROS wave through mesophyll cells could contribute to systemic signal integration during HL and HS stress combination. Our findings reveal that the ROS wave can propagate through tissues other than the vascular bundles of plants, and that different stresses can trigger different types of systemic signals that propagate through different cell layers and induce stress-specific systemic responses.more » « less
-
null (Ed.)Systemic signaling and systemic acquired acclimation (SAA) are key to the survival of plants during episodes of abiotic stress. These processes depend on a continuous chain of cell-to-cell signaling events that extends from the initial tissue that senses the stress (the local tissue) to the entire plant (systemic tissues). Reactive oxygen species (ROS) and Ca 2+ are key signaling molecules thought to be involved in this cell-to-cell mechanism. Here, we report that the systemic response of Arabidopsis thaliana to a local treatment of high light stress, which resulted in local ROS accumulation, required ROS generated by respiratory burst oxidase homolog D (RBOHD). ROS increased cell-to-cell transport and plasmodesmata (PD) pore size in a manner dependent on PD-localized protein 1 (PDLP1) and PDLP5, and this process was required for the propagation of the systemic ROS signals and SAA. Furthermore, aquaporins and several Ca 2+ -permeable channels in the glutamate receptor–like (GLR), mechanosensitive small conductance–like (MSL), and cyclic nucleotide–gated (CNGC) families were involved in this systemic signaling process. However, we determined that these channels were required primarily to amplify the systemic signal in each cell along the path of the systemic ROS wave, as well as to establish local and systemic acclimation. Thus, PD and RBOHD-generated ROS orchestrate light stress–induced rapid cell-to-cell spread of systemic signals in Arabidopsis .more » « less
-
SUMMARY Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas‐exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2, light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including
dde2, sid2, coi1 ,jai1 ,myc2 andnpr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light and ozone, ABA‐triggered stomatal closure innpr1‐1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in thecoi1‐16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl‐JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine‐induced stomatal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole‐plant stomatal response to environmental cues in Arabidopsis andSolanum lycopersicum (tomato). -
SUMMARY The sensing of abiotic stress, mechanical injury or pathogen attack by a single plant tissue results in the activation of systemic signals that travel from the affected tissue to the entire plant. This process is essential for plant survival during stress and is termed systemic signaling. Among the different signals triggered during this process are calcium, electric, reactive oxygen species and hydraulic signals. These are thought to propagate at rapid rates through the plant vascular bundles and to regulate many of the systemic processes essential for plant survival. Although the different signals activated during systemic signaling are thought to be interlinked, their coordination and hierarchy still need to be determined. Here, using a combination of advanced whole‐plant imaging and hydraulic pressure measurements, we studied the activation of all four systemic signals in wild‐type and different
Arabidopsis thaliana mutants subjected to a local treatment of high‐light (HL) stress or wounding. Our findings reveal that activation of systemic membrane potential, calcium, reactive oxygen species and hydraulic pressure signals, in response to wounding, is dependent on glutamate receptor‐like proteins 3.3 and 3.6. In contrast, in response to HL stress, systemic changes in calcium and membrane potential depended on glutamate receptor‐like 3.3 and 3.6, while systemic hydraulic signals did not. We further show that plasmodesmata functions are required for systemic changes in membrane potential and calcium during responses to HL stress or wounding. Our findings shed new light on the different mechanisms that integrate different systemic signals in plants during stress. -
Abstract Reactive oxygen species (ROS), produced by respiratory burst oxidase homologs (RBOHs) at the apoplast, play a key role in local and systemic cell-to-cell signaling, required for plant acclimation to stress. Here we reveal that the Arabidopsis thaliana leucine-rich-repeat receptor-like kinase H2O2-INDUCED CA2+ INCREASES 1 (HPCA1) acts as a central ROS receptor required for the propagation of cell-to-cell ROS signals, systemic signaling in response to different biotic and abiotic stresses, stress responses at the local and systemic tissues, and plant acclimation to stress, following a local treatment of high light (HL) stress. We further report that HPCA1 is required for systemic calcium signals, but not systemic membrane depolarization responses, and identify the calcium-permeable channel MECHANOSENSITIVE ION CHANNEL LIKE 3, CALCINEURIN B-LIKE CALCIUM SENSOR 4 (CBL4), CBL4-INTERACTING PROTEIN KINASE 26 and Sucrose-non-fermenting-1-related Protein Kinase 2.6/OPEN STOMATA 1 (OST1) as required for the propagation of cell-to-cell ROS signals. In addition, we identify serine residues S343 and S347 of RBOHD (the putative targets of OST1) as playing a key role in cell-to-cell ROS signaling in response to a local application of HL stress. Our findings reveal that HPCA1 plays a key role in mediating and coordinating systemic cell-to-cell ROS and calcium signals required for plant acclimation to stress.