The paleomagnetic record is an archive of Earth’s geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.
more »
« less
Bayesian Paleomagnetic Euler Pole Inversion for Paleogeographic Reconstruction and Analysis
Abstract Apparent polar wander paths (APWPs) synthesized from paleomagnetic poles provide the most direct data for reconstructing past paleogeography and plate motions for times earlier than ca. 200 Ma. In this contribution, we describe a new method for APWP synthesis that extends the paleomagnetic Euler pole analysis of Gordon et al. (1984,https://doi.org/10.1029/TC003i005p00499) by placing it within the framework of a Bayesian inverse problem. This approach incorporates uncertainties in pole positions and age that are often ignored in standard treatments. The paleomagnetic Euler poles resulting from the inversions provide estimates for full‐vector plate motion (both latitude and longitude) and associated uncertainty. The method allows for inverting for one or more Euler poles with the timing of changepoints being solved as part of the inversion. In addition, the method allows the incorporation of true polar wander rotations, thus providing an avenue for probabilistic partitioning of plate tectonic motion and true polar wander based on paleomagnetic poles. We show example inversions on synthetic data to demonstrate the method's capabilities. We illustrate application of the method to Cenozoic Australia paleomagnetic poles which can be compared to independent plate reconstructions. A two‐Euler pole inversion for the Australian record recovers northward acceleration of Australia in the Eocene with rates that are consistent with plate reconstructions. We also apply the method to constrain rapid rates of motion for cratonic North America associated with the Keweenawan Track of late Mesoproterozoic paleomagnetic poles. The application of Markov chain Monte Carlo methods to estimate paleomagnetic Euler poles can open new directions in quantitative paleogeography.
more »
« less
- Award ID(s):
- 1847277
- PAR ID:
- 10373571
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 10
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times.more » « less
-
Abstract In this study we focus on the investigation of the absolute intensity records of two volcanic subsequences, aiming to enrich the global paleointensity database for the last 5 Ma, which currently shows important dispersion. We present new absolute paleointensities obtained from the Plio‐Pleistocene volcanic sequence of Korkhi (Djavakheti Highland, Georgia) (41°27′31″N, 43°27′55″E). Korkhi is divided into two lava flow subsequences dated at 3.11 ± 0.20 Ma and 1.85 ± 0.08 Ma. Paleomagnetic directions previously published (Sánchez‐Moreno et al., 2018,https://doi.org/10.1029/2017GC007358) show a normal polarity in the lower Korkhi subsequence and a reverse‐to‐intermediate polarity in the upper Korkhi subsequence. The new paleointensity determinations are obtained through two different Thellier‐type protocols (Thellier‐Thellier and IZZI) and the corrected multispecimen method. We utilize different selection criteria and interpretation approaches (TTB, CCRIT, BiCEP and multimethod), and we make a critical evaluation on their application on complex magnetic behaviors, such as often found in volcanic rocks. Finally, we obtained a paleointensity of 70 μT in upper Korkhi and 14 paleointensities in lower Korkhi that vary between 5.2 and 37.2 μT. These results agree with a recently proposed non‐Geocentric Axial Dipole (GAD) hypothesis for the last ∼1.5 Ma (Cych et al., 2023,https://doi.org/10.1029/2023JB026492), and with low field strength for the 3–4 Ma.more » « less
-
Abstract The Tonian supercontinent Rodinia is hypothesized to have included almost all Proterozoic continental blocks. Competing models variably place South China at the core or periphery of Rodinia or separated from it entirely. Tonian paleogeographic models also vary in whether they incorporate hypothesized large and rapid oscillatory true polar wander associated with the ca. 810–795 Ma Bitter Springs Stage. Here, we present paleomagnetic data paired with U‐Pb chemical abrasion isotope dilution thermal ionization mass spectrometry zircon geochronology from the Tonian Xiajiang Group in South China to establish the craton's position and test the Bitter Springs Stage true polar wander hypothesis. Fine‐grained siliciclastic sediments and ashes of the Xiajiang Group post‐date the Jiangnan Orogeny, which united the Yangtze and Cathaysia blocks. A U‐Pb zircon date of 815.73 ± 0.18 Ma from a tuff near the base of the Xiajiang Group constrains the Jiangnan Orogeny to have ended between ca. 830 and 816 Ma. The paleomagnetic and geochronologic data constrain South China to high latitudes ca. 813 Ma and indicate a relatively stable high‐latitude position from ca. 821 to 805 Ma. These high‐latitude constraints either connect the craton to Rodinia along its periphery or disconnect it from the supercontinent entirely. The difference in pole position between the pre‐Bitter Springs Stage Xiajiang Group pole and the syn‐Bitter Springs Stage Madiyi Formation pole is significantly less than that predicted for the Bitter Springs Stage true polar wander hypothesis. If this pole difference is interpreted as true polar wander superimposed upon differential plate motion, it requires South China to have been separate from Rodinia.more » « less
An official website of the United States government
